精英家教网 > 高中数学 > 题目详情

观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此规律,第五个等式应为                       .

5+6+7+8+9+10+11+12+13=81

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

中,不等式成立;在凸四边形ABCD中,
不等式成立;在凸五边形ABCDE中,不等式成立,…,依此类推,在凸n边形中,不等式_____成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.

(1)图中格点四边形DEFG对应的S,N,L分别是    ;
(2)已知格点多边形的面积可表示为S=aN+bL+c,其中a,b,c为常数.若某格点多边形对应的N=71,L=18,则S=    (用数值作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知下列等式:

观察上式的规律,写出第个等式________________________________________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题


已知          

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知数列{an}满足a1=2,an+1 (n∈N*),则a3=________,a1·a2·a3·…·a2007=________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)= (x>0),观察f1(x)=f(x)=
f2(x)=f[f1(x)]=
f3(x)=f[f2(x)]=
f4(x)=f[f3(x)]=,…
根据以上事实,由归纳推理可得:当n∈Nn≥2时,fn(x)=f[fn-1(x)]=________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

将连续整数1,2,…,25填入如图所示的5行5列的表格中,使每一行的数从左到右都成递增数列,则第三列各数之和的最小值为    ,最大值为    .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

用数学归纳法证明1+++…+<n(n∈N*,n>1)时,第一步应验证的不等式是    .

查看答案和解析>>

同步练习册答案