精英家教网 > 高中数学 > 题目详情

 已知是公差为d的等差数列,是公比为q的等比数列

(1)若 ,是否存在,有?请说明理由;

(2)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;

(3)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.

【解】(1)由

整理后,可得

为整数

不存在,使等式成立。

(2)当时,则

,其中是大于等于的整数

反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)设

为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。

式得,整理得

时,符合题意。

为奇数时,

   由,得

为奇数时,此时,一定有使上式一定成立。

为奇数时,命题都成立。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有以下命题:设an1,an2,…anm是公差为d的等差数列{an}中任意m项,若
n1+n2+…+nm
m
=p+
r
m
(p∈N*,r∈N且r<m),则
an1+an2+…+anm
m
=ap+
r
m
d;特别地,当r=0时,称ap为an1,an2,…anm的等差平均项.
(1)已知等差数列{an}的通项公式为an=2n,根据上述命题,则a1,a3,a10,a18的等差平均项为:
 

(2)将上述真命题推广到各项为正实数的等比数列中:设an1,an2,…anm是公比为q的等比数列{an}中任意m项,若
n1+n2+…+nm
m
=p+
r
m
(p∈N*,r∈N且r<m),则
 
;特别地,当r=0时,称ap为an1,an2,…anm的等比平均项.

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下真命题:设an1an2,…,anm是公差为d的等差数列{an}中的任意m个项,若
n1+n2+…+nm
m
=p+
r
m
(0≤r<m,p、r、m∈N或r=0)①,则有
an1+an2+…+anm
m
=ap+
r
m
d
②,特别地,当r=0时,称apan1an2,…,anm的等差平均项.
(1)当m=2,r=0时,试写出与上述命题中的(1),(2)两式相对应的等式;
(2)已知等差数列{an}的通项公式为an=2n,试根据上述命题求a1,a3,a10,a18的等差平均项;
(3)试将上述真命题推广到各项为正实数的等比数列中,写出相应的真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•盐城一模)已知“接龙等差”数列a1,a2,…,a10,a11,…,a20,a21,…,a30,a31,…构成如下:a1=1,a1,a2,…,a10是公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…,a30是公差为d2的等差数列;…;a10n,a10n+1,a10n+2,…,a10n+10是公差为dn的等差数列(n∈N*);其中d≠0.
(1)若a20=80,求d;
(2)设bn=a10n.求bn
(3)当d>-1时,证明对所有奇数n总有bn>5.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知“接龙等差”数列a1,a2,…,a10,a11,…,a20,a21,…,a30,a31,…构成如下:a1=1,a1,a2,…,a10是公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…,a30是公差为d2的等差数列;…;a10n,a10n+1,a10n+2,…,a10n+10是公差为dn的等差数列(n∈N*);其中d≠0.

(1)若a20=80,求d;

(2)设bn=a10n,求bn;

(3)当d>-1时,证明对所有奇数n总有bn>5.

查看答案和解析>>

科目:高中数学 来源:2007年江苏省盐城市高考数学一模试卷(解析版) 题型:解答题

已知“接龙等差”数列a1,a2,…,a10,a11,…,a20,a21,…,a30,a31,…构成如下:a1=1,a1,a2,…,a10是公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…,a30是公差为d2的等差数列;…;a10n,a10n+1,a10n+2,…,a10n+10是公差为dn的等差数列(n∈N*);其中d≠0.
(1)若a20=80,求d;
(2)设bn=a10n.求bn
(3)当d>-1时,证明对所有奇数n总有bn>5.

查看答案和解析>>

同步练习册答案