精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为R的函数f(x)在(2,+∞)为增函数,且函数y=f(x+2)为偶函数,则下列结论不成立的是(
A.f(0)>f(1)
B.f(0)>f(2)
C.f(1)>f(3)
D.f(1)>f(2)

【答案】C
【解析】解:∵函数f(x)在(2,+∞)为增函数
∴函数y=f(x+2)在(0,+∞)为增函数
又∵函数y=f(x+2)为偶函数,
∴函数y=f(x+2)在(﹣∞,0)为减函数
即函数y=f(x)在(﹣∞,2)为减函数
则函数y=f(x)的图象如下图示:
由图可知:f(0)>f(1),
f(0)>f(2),f(1)>f(2)均成立
只有f(1)与f(3)无法判断大小
故选C

【考点精析】掌握函数单调性的性质和函数奇偶性的性质是解答本题的根本,需要知道函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积是 ,表面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=x2﹣ax﹣3(﹣5≤x≤5)
(1)若a=2,求函数的最值;
(2)若函数在定义域内是单调函数,求a取值的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆为参数)上的每一点的横坐标保持不变,纵坐标变为原来的倍,得到曲线

(1)求出的普通方程;

(2)设直线 的交点为 ,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,的中点,将沿折起,使得平面.

(Ⅰ)求证:平面平面

(Ⅱ)若的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x|x|+bx+c(b,c∈R),给出如下四个命题:①若c=0,则f(x)为奇函数;②若b=0,则函数f(x)在R上是增函数;③函数y=f(x)的图象关于点(0,c)成中心对称图形;④关于x的方程f(x)=0最多有两个实根.其中正确的命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和直线

1求证:不论取什么值,直线和圆C总相交;

(2)求直线被圆C截得的最短弦长及此时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】奇函数f(x)、偶函数g(x)的图象分别如图1、2所示,方程f(g(x))=0、g(f(x))=0的实根个数分别为a、b,则a+b=(

A.14
B.10
C.7
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点, 是椭圆上的点,设动点满足.

1)求动点的轨迹的方程;

2)若直线与曲线相交于 两个不同点,求面积的最大值.

查看答案和解析>>

同步练习册答案