精英家教网 > 高中数学 > 题目详情
已知m,n为两个不相等的非零实数,则方程mx-y+n=0与nx2+my2=mn所表示的曲线可能是(  )
分析:方程mx-y+n=0一定表示直线,方程nx2+my2=mn,如果m,n同正,则表示椭圆,如果一正一负,则表示双曲线,从而可得结论.
解答:解:方程mx-y+n=0表示直线,与坐标轴的交点分别为(0,n),(-
n
m
,0)
若方程nx2+my2=mn表示椭圆,则m,n同为正,∴-
n
m
<0,故A,B不满足题意;
若方程nx2+my2=mn表示双曲线,则m,n异号,∴-
n
m
>0
,故C符合题意,D不满足题意
故选C
点评:本题考查曲线与方程,考查数形结合的数学思想,判断曲线的类型是关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆C1
x2
4
+y2=1和C2
x2
16
+
y2
4
=1,判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1
x2
4
+y2=1

(1)若椭圆C2
x2
16
+
y2
4
=1
,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线y=x与两个“相似椭圆”M:
x2
a2
+
y2
b2
=1
Mλ
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分别交于点A,B和点C,D,试在椭圆M和椭圆Mλ上分别作出点E和点F(非椭圆顶点),使△CDF和△ABE组成以λ为相似比的两个相似三角形,写出具体作法.(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•徐汇区三模)定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1
x2
4
+y2=1

(1)若椭圆C2
x2
16
+
y2
4
=1
,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线l与两个“相似椭圆”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分别交于点A,B和点C,D,证明:|AC|=|BD|

查看答案和解析>>

科目:高中数学 来源:北京市东城区2000~2001学年度第二学期形成性测试 高一数学 (五)空间两个平面(A) 题型:013

已知M、N、P是三个相异的平面,a、b是两条相异的直线,则下列命题中不正确的是

[  ]

A.M∩N=a,P⊥M,

B.M∥N,a与M所成的角为α,a与N所成的角为

C.M⊥N,a与M所成的角为α,a与N所成的角为

D.M∥N,

查看答案和解析>>

科目:高中数学 来源: 题型:013

已知M、N、P是三个相异的平面,a、b是两条相异的直线,则下列命题中不正确的是

[  ]

A.M∩N=a,P⊥M,

B.M∥N,a与M所成的角为α,a与N所成的角为

C.M⊥N,a与M所成的角为α,a与N所成的角为

D.M∥N,

查看答案和解析>>

同步练习册答案