精英家教网 > 高中数学 > 题目详情
13.已知首项为1公差为2的等差数列{an},其前n项和为Sn,则$\lim_{n→∞}\frac{{{{({a_n})}^2}}}{S_n}$=4.

分析 由题意,an=1+2(n-1)=2n-1,Sn=n+$\frac{n(n-1)}{2}×2$=n2,即可求极限.

解答 解:由题意,an=1+2(n-1)=2n-1,Sn=n+$\frac{n(n-1)}{2}×2$=n2
∴$\lim_{n→∞}\frac{{{{({a_n})}^2}}}{S_n}$=$\underset{lim}{n→∞}(2-\frac{1}{n})^{2}$=4,
故答案为:4.

点评 本题考查等差数列的通项与求和,考查极限的计算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某公司利润y与销售总额x(单位:千万元)之间有如下对应数据:
x10151720252832
y11.31.822.62.73.3
(1)画出散点图;
(2)半y与x是否具有线性相关关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:函数f(x)=|x-a|+x在[a2-2,+∞)上单调递增;命题q:关于x的方程x2-4x+8a=0有解.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设a∈Z,且0<a<13,若532017+a能被13整数,则a=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正四棱锥P-ABCD的底面是边长为2的正方形,侧棱的长度均为$\sqrt{6}$,则该四棱锥的外接球体积为(  )
A.$\frac{3π}{2}$B.$\frac{4}{3}$πC.$\frac{9}{2}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,已知点P(-2,2),对于任意不全为零的实数a、b,直线l:a(x-1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是[0,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图ABC-A1B1C1是直三棱柱,底面△ABC是等腰直角三角形,且AB=AC=4,直三棱柱的高等于4,线段B1C1的中点为D,线段BC的中点为E,线段CC1的中点为F.
(1)求异面直线AD、EF所成角的大小;
(2)求三棱锥D-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设f-1(x)为$f(x)=\frac{2x}{x+1}$的反函数,则f-1(1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,△ABC为边长为2的正三角形,AE∥CD,且AE⊥平面ABC,2AE=CD=2.
(1)求证:平面BDE⊥平面BCD;
(2)求二面角D-EC-B的正弦值.

查看答案和解析>>

同步练习册答案