精英家教网 > 高中数学 > 题目详情

【题目】多面体 在平面上的射影是线段的中点.

(1)求证:平面平面

(2)若,求二面角的余弦值.

【答案】(1)证明见解析;(2).

【解析】

试题分析:(1)过EEO//A1AABO,连接CO,先证明四边形OEC1C是平行四边形,可得C1E//CO,C1E⊥面ABB1A1,得CO⊥面ABB1A1,进而可得结论;(2)以点O为坐标原点以 为轴建立空间直角坐标系,分别求出平面AB1C1的法向量与平面A1B1BA的法向量,利用空间向量夹角余弦公式可得结果.

试题解析:(1)证明:过EEO//A1AABO,连接CO

由梯形的中位线知:

OECC1,又OE//CC1

故四边形OEC1C是平行四边形,

C1E⊥面ABB1A1,则CO⊥面ABB1A1

CO在面ABC内,

∴面ABC⊥面ABB1A1

(2)如图以点O为坐标原点建立空间直角坐标系, COC1E=2,

设面AB1C1的法向量为

依题知: ,即

a=1,得b=-2,c=2,∴,底面A1B1BA的法向量为

∴二面角C1-AB1-A1的余弦值为.

【方法点晴】本题主要考查线面垂直、面面垂直的判定,利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系(5)根据定理结论求出相应的角和距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)是偶函数,且在(0,+∞)内是减函数,又f(﹣3)=0,则xf(x)>0的解集是(
A.{x|﹣3<x<0或x>3}
B.{x|x<﹣3或x>3}
C.{x|﹣3<x<0或x<x<3}
D.{x|x<﹣3或0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为 (α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为
(1)求C的普通方程和l的倾斜角;
(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学得到方程2x+e0.3x﹣100=0(其中e=2.7182…)的大于零的近似解依次为①50;②50.1;③49.5;④50.001,你认为的答案为最佳近似解(请填甲、乙、丙、丁中的一个)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣a(x+1)(a≠0).
(1)讨论f(x)的单调性;
(2)若f(x)>a2﹣a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当a>0时,求函数f(x)的单调递减区间;

(Ⅱ)当a=0时,设函数g(x)=xf(x)﹣k(x+2)+2.若函数g(x)在区间 上有两个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合,圆的极坐标方程为,直线的参数方程为为参数).

(Ⅰ)若 是直线轴的交点, 是圆上一动点,求的最大值;

(Ⅱ)若直线被圆截得的弦长等于圆的半径倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)﹣g(x)=ex , 则有(
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点,点 是椭圆上异于长轴端点的两个点.

(1)求椭圆的离心率;

(2)已知直线 ,且,垂足为 ,垂足为,若,求中点的轨迹方程.

查看答案和解析>>

同步练习册答案