精英家教网 > 高中数学 > 题目详情
E,F是等腰直角△ABC斜边BC上的四等分点,则=   

试题分析:过A作AD⊥BC于D。
∵AB=AC,AB⊥AC,AD⊥BC,∴AD=BD=CD;
∵BE=EF=FC,∴AE=AF,DE=DF=EF,∠EAD=∠FAD=∠EAF
∴AD=3DE
∴tan∠EAD=
∴tan∠EAF=
点评:中档题,本题平面几何味很浓,注意从中发现边角关系,进一步利用倍角的正切公式求解。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知向量m=(2sinx,cosx),n=(cosx,2cosx),定义函数f(x)=m·n-1.
(1)求函数f(x)的最小正周期;
(2)确定函数f(x)的单调区间、对称轴与对称中心.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则(   )
A.7B.-7C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面上三点共线,且,则对于函数,下列结论中错误的是(   )
A.周期是B.最大值是2
C.是函数的一个对称点D.函数在区间上单调递增

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

阅读下面材料:
根据两角和与差的正弦公式,有
------①
------②
由①+② 得------③
 有
代入③得
(Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:
;
(Ⅱ)若的三个内角满足,试判断的形状.
(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则值为________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为得到函数的导函数图象,只需把函数的图象上所有点的
A.纵坐标伸长到原来的2倍,向左平移B.纵坐标缩短到原来的倍,向左平移
C.纵坐标伸长到原来的2倍,向左平移D.纵坐标缩短到原来的倍,向左平移

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则             。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

由y=f(x)的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到y=2sin的图象,则 f(x)为
A.2sinB.2sin
C.2sinD.2sin

查看答案和解析>>

同步练习册答案