精英家教网 > 高中数学 > 题目详情
8.在各项均为正数的等比数列{an}中,若a1•a19=100,则a9•a10•a11的值为1000.

分析 由已知条件利用等比数列的性质得a1•a19=${{a}_{10}}^{2}$=100,由此根据a9•a10•a11=${{a}_{10}}^{3}$,能求出结果.

解答 解:在各项均为正数的等比数列{an}中,a1•a19=100,
∴a1•a19=${{a}_{10}}^{2}$=100,
解得a10=10,
∴a9•a10•a11=${{a}_{10}}^{3}$=1000.
故答案为:1000.

点评 本题考查等比数列中三项积的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.过点M(-1,$\frac{1}{2}$)的直线l与椭圆x2+2y2=2交于A,B两点,设线段AB的中点为M,设直线l的斜率为k1(k1≠0),直线OM的斜率为k2,则k1k2的值为(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$.
(I)判断并证明f(x)的奇偶性;
(II)若函数F(x)=f(x)-$\frac{3-{2}^{x}}{k}$-1在[-1,1]有零点,求实数k的取值范围;
(Ⅲ)若对于任意a∈[1,3],不等式f(a2-2algm)+f(2a2-1)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,A=45°,a=2$\sqrt{2}$,c=2$\sqrt{3}$,求C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C所对的边分别是a,b,c,若a2+b2-c2=$\sqrt{3}$ab,则角C等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设等差数列{an}的公差为d,前n项和为Sn,各项均为正数的等比数列{bn}的公比为q,已知a1=3,b1=1,且b2+S2=12,a3=b3
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)求数列{$\frac{1}{{S}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下列四个命题:
①半径为2,圆心角的弧度数为$\frac{1}{2}$的扇形面积为$\frac{1}{2}$.
②若α,β为锐角,tan(α+β)=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,则α+2β=$\frac{π}{4}$或$\frac{5π}{4}$.
③函数y=cos(2x-$\frac{π}{3}$)的一条对称轴是x=$\frac{2π}{3}$
④已知α∈(0,π),sinα+cosα=-$\frac{\sqrt{2}}{5}$,则tan(α+$\frac{π}{4}$)=$\frac{\sqrt{6}}{12}$
其中正确的命题是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.“|x|>|y|”是“x>y”的既非充分也非必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.三棱柱的侧棱垂直于底面,所有的棱长都为2$\sqrt{3}$,顶点都在一个球面上,则该球的体积为(  )
A.$4\sqrt{3}π$B.$\frac{{28\sqrt{7}π}}{3}$C.$8\sqrt{6}π$D.$\frac{{32\sqrt{7}π}}{3}$

查看答案和解析>>

同步练习册答案