精英家教网 > 高中数学 > 题目详情

【题目】某玩具所需成本费用为PP=1 000+5xx2而每套售出的价格为Q其中Q(x)=a (abR),

(1)问:玩具厂生产多少套时使得每套所需成本费用最少?

(2)若生产出的玩具能全部售出且当产量为150套时利润最大此时每套价格为30ab的值.(利润=销售收入-成本).

【答案】(1)该玩具厂生产100套时每套所需成本最少.(2)a=25,b=30.

【解析】

(1)先建立每套所需成本费用函数关系式,再根据基本不等式求最值,(2)先根据利润=销售收入-成本建立利润函数关系式,再根据二次函数性质确定开口方向、对称轴位置以及最大值取法,解方程与不等式组可得ab的值.

解:(1)每套玩具所需成本费用为

x+5≥2+5=25,

x,即x=100时等号成立,

故该玩具厂生产100套时每套所需成本最少.

(2)设售出利润为w,则wx·Q(x)-P

x

x2+(a-5)x-1 000,

由题意得解得a=25,b=30.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=(m2m-1)·是幂函数,对任意x1x2∈(0,+∞)且x1x2,满足,若ab∈R且ab>0,ab<0,则f(a)+f(b)的值(  )

A. 恒大于0 B. 恒小于0

C. 等于0 D. 无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)若,若对任意,存在,使得 成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中xOy,直线C1的参数方程为 (t是参数).在以坐标原点为极点,x轴非负半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=sinθ﹣cosθ(θ是参数).
(Ⅰ)将曲线C2的极坐标方程化为直角坐标方程,并判断曲线C2所表示的曲线;
(Ⅱ)若M为曲线C2上的一个动点,求点M到直线C1的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在50和350之间所有末位数是1的整数之和是( )

A. 5880 B. 5539 C. 5208 D. 4877

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 f(x)=,其中 c>a>0,c>b>0. a,b,c 是△ABC 的三条边长,给出下列命题:

对于x(-∞,1),都有 f(x)>0;

存在 x>0,使不能构成一个三角形的三边长;

若△ABC 为钝角三角形,则存在 x(1,2),使 f(x)=0.

则其中所有正确结论的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ( m 为常数).

(Ⅰ)若曲线 y f x 在点 0, f 0 处的切线斜率为 1 ,求实数 m 的值.

(Ⅱ)求函数 f x 的极值.

(Ⅲ)证明:当 x 0 时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (m>0)的最大值为2.
(1)求函数,f(x)在[0,π]上的单调递减区间;
(2)△ABC中,a,b,c分别是角A,B,C所对的边,C=60°,c=3,且 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年,将在北京和张家口两个城市举办第24届冬奥会.某中学为了普及奥运会知识和提高学生参加体育运动的积极性,举行了一次奥运知识竞赛.随机抽取了30名学生的成绩,绘成如图所示的茎叶图,若规定成绩在75分以上(包括75)的学生定义为甲组,成绩在75分以下(不包括75)定义为乙组.

(1)在这30名学生中,甲组学生中有男生7人,乙组学生中有女生12人,试问有没有90%的把握认为成绩分在甲组或乙组与性别有关;

(2)①如果用分层抽样的方法从甲组和乙组中抽取5人,再从这5人中随机抽取2人,那么至少有1人在甲组的概率是多少?

②用样本估计总体,把频率作为概率,若从该地区所有的中学(人数很多)中随机选取3人,用表示所选3人中甲组的人数,试写出的分布列,并求出的数学期望.

附: ;其中

独立性检验临界表:

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

同步练习册答案