【题目】2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现从这两校参加考试的学生数学成绩在100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如下的茎叶图.
(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有90的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关;
(3)若从这40名学生中选取数学成绩在的学生,用分层抽样的方式从甲乙两校中抽取5人,再从这5人中随机抽取3人分析其失分原因,求这3人中恰有2人是乙校学生的概率.
参考公式与临界值表:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)见解析;(2)见解析;(3)
【解析】
(1)根据茎叶图分别求出甲乙两校数学成绩的中位数后进行比较即可得到结论.(2)根据题中数据可得列联表,由表中数据得到,由此可得结论.(3)根据分层抽样的方法可得从甲校抽取2人、乙校抽3人,然后根据古典概型概率求解即可.
(1)由茎叶图可知,甲校学生数学成绩的中位数为,乙校学生数学成绩的中位数为,
所以这40份试卷的成绩,甲校学生数学成绩的中位数比乙校学生数学成绩的中位数高.
(2)由题意,得到列联表如下:
甲校 | 乙校 | 合计 | |
数学成绩优秀 | 10 | 7 | 17 |
数学成绩不优秀 | 10 | 13 | 23 |
合计 | 20 | 20 | 40 |
由表中数据可得,,
所以没有90的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关.
(3)这40名学生中数学成绩在的甲校有4人,乙校有6人,用分层抽样的方式抽取5人,则甲校抽取2人,分别记作;乙校抽3人,分别记作.
从这5人中随机抽取3人,所有可能的结果有:
,共10种,
其中乙校学生恰有2人的结果有:,共6种,
所以所求概率.
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是平行四边形,,侧面底面,,, 分别为的中点,点在线段上.
(Ⅰ)求证:直线平面;
(Ⅱ)若为的中点,求平面与平面所成锐二面角的余弦值;
(Ⅲ)设,当为何值时,直线与平面所成角的正弦值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上任意两点,且EF的长为定值,则下面的四个值中不为定值的是( )
A.点P到平面QEF的距离
B.直线PQ与平面PEF所成的角
C.三棱锥P﹣QEF的体积
D.二面角P﹣EF﹣Q的大小
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在中,,的中点为,点在的延长线上,且.固定边,在平面内移动顶点,使得圆分别与边,的延长线相切,并始终与的延长线相切于点,记顶点的轨迹为曲线.以所在直线为轴,为坐标原点建立平面直角坐标系,如图②所示.
(1)求曲线的方程;
(2)过点的直线与曲线交于不同的两点,,直线,分别交曲线于点,,设,,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线,的公共点为.
(Ⅰ)求直线的斜率;
(Ⅱ)若点分别为曲线,上的动点,当取最大值时,求四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由无理数论引发的数字危机一直延续到19世纪,直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机,所谓戴德金分割,是指将有理数集划分为两个非空的子集与,且满足,,中的每一个元素都小于中的每一个元素,则称为戴德金分割.试判断,对于任一戴德金分割,下列选项中,可能成立的是____.
①没有最大元素,有一个最小元素;②没有最大元素,也没有最小元素;
③有一个最大元素,有一个最小元素;④有一个最大元素,没有最小元素.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:过抛物线C:的焦点F,且与抛物线C交于点A、B两点,过A、B两点分别作抛物线准线的垂线,垂足分别为M、N,则下列说法错误的是
A. 抛物线的方程为B. 线段AB的长度为
C. D. 线段AB的中点到y轴的距离为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面ABCD是正方形,侧面底面ABCD,且,设E,F分别为PC,BD的中点.
(1)求证:平面PAD;
(2)求直线EF与平面PBD所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com