精英家教网 > 高中数学 > 题目详情
16.已知正方形的中心为(0,-1),其中一条边所在的直线方程为3x+y-2=0.求其他三条边所在的直线方程.

分析 设出直线方程根据点到直线的距离相等,求出待定系数,从而得到其它三边所在的直线方程.

解答 解:设其中一条边为3x+y+D=0,
则$\frac{|-1+D|}{{\sqrt{{1^2}+{3^2}}}}$=$\frac{|-1-2|}{{\sqrt{{1^2}+{3^2}}}}$,解得D=4或-2(舍)
∴3x+y+4=0,
设另外两边为x-3y+E=0,则$\frac{|3+E|}{{\sqrt{{1^2}+{3^2}}}}$=$\frac{|-1-2|}{{\sqrt{{1^2}+{3^2}}}}$,
解得E=0或-6,∴x-3y=0或x-3y-6=0
∴其他三边所在直线方程分别为;
3x+y+4=0,x-3y=0,x-3y-6=0.

点评 本题考查求两直线的交点的坐标,点到直线的距离公式的应用,两直线平行、垂直的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知实数a满足下列两个条件:
①关于x的方程ax2+3x+1=0有解;
②代数式log2(a+3)有意义.
则使得指数函数y=(3a-2)x为减函数的概率为(  )
A.$\frac{4}{63}$B.$\frac{1}{16}$C.$\frac{3}{63}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过抛物线x2=4y的焦点且与其对称轴垂直的弦AB的长度是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一个焦点到渐近线的距离为3,且离心率为2则此双曲线的方程$\frac{x^2}{3}-\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不存在函数f(x)满足,对任意x∈R都有(  )
A.f(|x+1|)=x2+2xB.f(cos2x)=cosxC.f(sinx)=cos2xD.f(cosx)=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.观察下面频率等高条形图,其中两个分类变量x,y之间关系最强的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线${C_1}:\frac{x^2}{4}-{y^2}=1$,双曲线${C_2}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若${S_{△OM{F_2}}}=16$,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长是(  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线y2=2px的准线方程是x=-2,则p的值为(  )
A.2B.4C.-2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在区间(0,+∞)上的函数f(x)使不等式xf'(x)<4f(x)恒成立,其中f'(x)为f(x)的导数,则(  )
A.$\frac{f(2)}{f(1)}<16$B.$\frac{f(2)}{f(1)}<8$C.$\frac{f(2)}{f(1)}<4$D.$\frac{f(2)}{f(1)}<2$

查看答案和解析>>

同步练习册答案