【题目】如图,在三棱柱中,已知平面,,,.
(1) 求证:;
(2) 求直线与平面所成角的正弦值.
【答案】(1)详见解析;(2).
【解析】
(1)直棱柱的关系先证明和进而证明平面,从而得到即可.
(2)建立以为坐标原点,以,,所在的直线分别为,,轴的空间直角坐标系,再求出的向量与平面的法向量求解即可.
解:(1)如图,连接,因为平面,平面,平面,所以,.
又,所以四边形为正方形,所以.
因为,所以.又平面,平面,,所以,平面
因为平面,所以.
又平面,平面,,所以平面.
因为平面,所以
(2)解法1:在中,,,,所以.
又平面,,所以三棱锥的体积
易知,,,
所以
设点到平面的距离为,则三棱锥的体积,
由等体积法可知,则,解得 .
设直线与平面所成的角为,则,
故直线与平面所成角的正弦值为
解法2:(2)由(1)知,,,两两垂直,以为坐标原点,以,,所在的直线分别为,,轴,建立如图所示的空间直角坐标系.因为,.
所以,,,,
所以,,
设平面的法向量为,则,即,
令,,所以为平面的一个法向量,
则
设直线与平面所成的角为,则,
故直线与平面所成角的正弦值为
科目:高中数学 来源: 题型:
【题目】已知函数,,
(1)若函数f(x)有两个零点,求实数a的取值范围;
(2)若a=3,且对任意的x1∈[-1,2],总存在,使g(x1)-f(x2)=0成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为,长轴长为.
(Ⅰ)求椭圆的标准方程及离心率;
(Ⅱ)过点的直线与椭圆交于,两点,若点满足,求证:由点 构成的曲线关于直线对称.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某公司生产某款手机的年固定成本为40万元,每生产1万只还需另投入16万元.设该公司一年内共生产该款手机万只并全部销售完,每万只的销售收入为万元,且
(1)写出年利润(万元)关于年产量(万只)的函数解析式;
(2)当年产量为多少万只时,该公司在该款手机的生产中所获得的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】省环保厅对、、三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:
城 | 城 | 城 | |
优(个) | 28 | ||
良(个) | 32 | 30 |
已知在这180个数据中随机抽取一个,恰好抽到记录城市空气质量为优的数据的概率为0.2.
(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在城中应抽取的数据的个数;
(2)已知, ,求在城中空气质量为优的天数大于空气质量为良的天数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个函数,如果对任意一个三角形,只要它的三边长、、都在的定义域内,就有、、也是某个三角形的三边长,则称为“双三角形函数”.
(1)判断,,中,哪些是“双三角形函数”,哪些不是,并说明理由;
(2)若是定义在上周期函数,值域为,求证:不是“双三角形函数”;
(3)已知函数,,求证:函数是“双三角形函数”.(可利用公式“”)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com