【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:
甲公司 | 乙公司 | ||||||||
职位 | A | B | C | D | 职位 | A | B | C | D |
月薪/千元 | 5 | 6 | 7 | 8 | 月薪/千元 | 4 | 6 | 8 | 10 |
获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 |
(1)若两人分别去应聘甲、乙两家公司的C职位,记这两人被甲、乙两家公司的C职位录用的人数和为,求的分布列;
(2)根据甲、乙两家公司的聘用信息,如果你是该求职者,你会选择哪一家公司?说明理由。
(3)若小王和小李分别被甲、乙两家公司录用,求小王月薪高于小李的概率。
【答案】(1)见解析;(2)见解析;(3)0.49
【解析】
(1)由题意知,得到随机变量可能取值为,求得相应的概率,即可得出分布列;
(2)利用公式,分别求解甲公司与乙公司的月薪分别为随机变量期望与方差,即可得到结论;
(3)设小王和小李的月薪分别为,由=++,即可求解.
(1)由题意知,这两人被甲、乙两家公司的C职位录用的人数和为,所以随机变量可能取值为,
其中,,
,
所以的分布列为
0 | 1 | 2 | |
P | 0.64 | 0.32 | 0.04 |
(2)设甲公司与乙公司的月薪分别为随机变量X,Y,
则E(X)=5×0.4+6×0.3+7×0.2+8×0.1=6,
E(Y)=4×0.4+6×0.3+8×0.2+10×0. 1=6,
D(X)=(5﹣6)2×0.4+(6﹣6)2×0.3+(7﹣6)2×0.2+(8﹣6)2×0.1=1,
D(Y)=(4﹣6)2×0.4+(6﹣6)2×0.3+(8﹣6)2×0.2+(10﹣6)2×0.1=4,
则E(X)=E(Y),D(X)<D(Y),
我希望不同职位的月薪差距小一些,故选择甲公司;
或我希望不同职位的月薪差距大一些,故选择乙公司;
(3)设小王和小李的月薪分别为(千元),则
=++ ,
所以小王月薪高于小李的概率为.
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若函数在区间上存在零点,求实数的取值范围;
(2)当时,若对任意的、,恒成立,求实数的取值范围;
(3)若函数在上的值城为区间,是否存在常数,使得区间的长度为?若存在,求出的值;若不存在,请说明理由.(注:区间的长度为).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】手机是人们必不可少的工具,极大地方便了人们的生活、工作、学习,现代社会的衣食住行都离不开它.某调查机构调查了某地区各品牌手机的线下销售情况,将数据整理得如下表格:
品牌 | 其他 | ||||||
销售比 | |||||||
每台利润(元) | 100 | 80 | 85 | 1000 | 70 | 200 |
该地区某商场岀售各种品牌手机,以各品牌手机的销售比作为各品牌手机的售出概率.
(1)此商场有一个优惠活动,每天抽取一个数字(,且),规定若当天卖出的第台手机恰好是当天卖出的第一台手机时,则此手机可以打5折.为保证每天该活动的中奖概率小于0.05,求的最小值;(,)
(2)此商场中一个手机专卖店只出售和两种品牌的手机,,品牌手机的售出概率之比为,若此专卖店一天中卖出3台手机,其中手机台,求的分布列及此专卖店当天所获利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中.
(1)当时,求函数在处的切线方程;
(2)记函数的导函数是,若不等式对任意的实数恒成立,求实数a的取值范围;
(3)设函数,是函数的导函数,若函数存在两个极值点,,且,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为,乙每次投篮命中的概率为,而且不受其他次投篮结果的影响.设投篮的轮数为,若甲先投,则等于( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月26日,铁人中学举行了盛大的成人礼.仪式在《相信我们会创造奇迹》的歌声中拉开序幕,庄严而神圣的仪式感动了无数家长,4月27日,铁人中学官方微信发布了整个仪式精彩过程,几十年众志成城,数十载砥砺奋进,铁人中学正在创造着一个又一个奇迹.官方微信发布后,短短几个小时点击量就突破了万人,收到了非常多的精彩留言.学校从众多留言者中抽取了100人参加“学校满意度调查”,其留言者年龄集中在之间,根据统计结果,做出频率分布直方图如下:
(Ⅰ)求这100位留言者年龄的样本平均数和样本方差(同一组数据用该区间的中点值作代表);
(Ⅱ)由频率分布直方图可以认为,留言者年龄服从正态分布,其中近似为样本均数,近似为样本方差.
(ⅰ)利用该正态分布,求;
(ii)学校从年龄在和的留言者中,按照分层抽样的方法,抽出了7人参加“精彩留言”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间的人数是,求变量的分布列和数学期望.附:,若,则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列4个结论:
①函数与函数的定义域相同,②函数(为常数)图像可由的图像平移得到,③函数是奇函数且是偶函数,④若幂函数是奇函数,则是定义域上的增函数,其中正确的结论的序号是_________(将所有正确结论的序号都填上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com