【题目】从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下:
甲:7,8,6,9,6,5,9,9,7,4.
乙:9,5,7,8,7,6,8,6,7,7.
(1)分别计算甲、乙两人射击命中环数的极差、众数和中位数;
(2)分别计算甲、乙两人射击命中环数的平均数、方差、标准差;
(3)比较两人的成绩,然后决定选择哪一个人参赛.
科目:高中数学 来源: 题型:
【题目】高一某班级在学校数学嘉年华活动中推出了一款数学游戏,受到大家的一致追捧.游戏规则如下:游戏参与者连续抛掷一颗质地均匀的骰子,记第i次得到的点数为,若存在正整数n,使得,则称为游戏参与者的幸运数字。
(I)求游戏参与者的幸运数字为1的概率;
(Ⅱ)求游戏参与者的幸运数字为2的概率,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面ABCD为平行四边形,PA⊥底面ABCD,,,,.
(1)求证:平面PCA⊥平面PCD;
(2)设E为侧棱PC上的一点,若直线BE与底面ABCD所成的角为45°,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人独立的对某一技术难题进行攻关。甲能攻克的概率为,乙能攻克的概率为,丙能攻克的概率为;
(1)求这一技术难题被攻克的概率;
(2)若该技术难题未被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励6万元。奖励规则如下:若只有一人攻克,则此人获得全部奖金6万元;若只有2人攻克,则此二人均分奖金,每人3万元;若三人均攻克,则每人2万元。在这一技术难题被攻克的前提下,设甲拿到的奖金数为,求的分布列和数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了问卷调查,得到了如下列联表:
男性 | 女性 | 合计 | |
爱好 | 10 | ||
不爱好 | 8 | ||
合计 | 30 |
已知在这30人中随机抽取1人抽到爱好运动的员工的概率是.
(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料分析能否有把握认为爱好运动与性别有关?
(2)若从这30人中的女性员工中随机抽取2人参加一活动,记爱好运动的人数为,求的分布列、数学期望.参考数据:
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为椭圆E: 的左、右顶点, ,E的两个焦点与E的短轴两个端点所构成的四边形是正方形.
(1)求椭圆E的方程;
(2)设动点(),记直线与E的交点(不同于)到x轴的距离分别为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线,直线关于直线对称的直线为,直线,与曲线分别交于点、和、,记直线的斜率为.
(Ⅰ)求证:;
(Ⅱ)当变化时,试问直线是否恒过定点?若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(为参数),以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于, 两点.
(1)求圆的直角坐标方程及弦的长;
(2)动点在圆上(不与, 重合),试求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形是由正n+2边形扩展而来 ,则第n+1个图形的顶点个数是 ( )
(1) (2)(3) (4)
A. (2n+1)(2n+2)B. 3(2n+2)C. (n+2)(n+3)D. (n+3)(n+4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com