精英家教网 > 高中数学 > 题目详情

【题目】某旅游景区的景点处和处之间有两种到达方式,一种是沿直线步行,另一种是沿索道乘坐缆车,现有一名游客从处出发,以的速度匀速步行,后到达处,在处停留后,再乘坐缆车回到.假设缆车匀速直线运动的速度为.

1)求该游客离景点的距离关于出发后的时间的函数解析式,并指出该函数的定义域;

2)做出(1)中函数的图象,并求该游客离景点的距离不小于的总时长.

【答案】1;定义域为

2)图见详解;

【解析】

1)根据题意首先求出处的距离,再算出乘坐缆车回到A处用的时间,从而可求解析式以及定义域.

2)由(1)作出分段函数的图像,并且根据分段函数令,求出时间作差即可.

1)由题意可得

乘坐缆车回到A处用的时间为

因此该游客离景点的距离关于出发后的时间的函数解析式为:

,定义域为.

2)(1)中函数的图象如图所示:

,可得,令

可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正三角形的边长为,将它沿高翻折,使点与点间的距离为,此时四面体外接球表面积为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1998年,某地在抗洪抢险中接到预报,24小时后有一个超历史最高水位的洪峰到达,为保万无一失,指挥部决定在24小时内筑起一道堤坝作为第二防线.经计算,其工程量除动用现有军民连续奋战外,还需要20台大型翻斗车同时作业24小时.但是,除了第一辆车可以立即调入工作外,其余车辆需从各单位紧急抽调,每隔20分钟有一辆车到达投入作业,已知指挥部最多能组织到25辆车.问24小时内能否完成第二防线工程?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着一带一路倡议的推进,中国与沿线国家旅游合作越来越密切,中国到一带一路沿线国家的游客人也越来越多,如图是2013-2018年中国到一带一路沿线国家的游客人次情况,则下列说法正确的是(  )

①2013-2018年中国到一带一路沿线国家的游客人次逐年增加

②2013-2018年这6年中,2016年中国到一带一路沿线国家的游客人次增幅最小

③2016-2018年这3年中,中国到一带一路沿线国家的游客人次每年的增幅基本持平

A.①③B.②③C.①②D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:的右焦点为F,点A(一2,2)为椭圆C内一点。若椭圆C上存在一点P,使得|PA|+|PF|=8,则m的最大值是___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

2)设点上,点上,求的最小值及此时的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点是以为底边的等腰三角形,点在直线:上.

(1)求边上的高所在直线的方程;

(2)求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)当时,写出函数的单调区间;(直接写出答案,不必写出证明过程)

(2)当时,求函数的零点;

(3)当时,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周上有个点,用弦两两连结起来,其中任何3条弦都不在圆内共点.现将由此形成的互补重叠的圆内区域的个数记为.

(1).直接画图求出

(2).确定的表达式.

查看答案和解析>>

同步练习册答案