精英家教网 > 高中数学 > 题目详情
18.设集合M={x|x2=x},N={x|1<2x<2},则M∪N=(  )
A.(-∞,2]B.(0,1]C.(0,2]D.[0,1]

分析 先分别求出集体合M和N,由此能求出M∪N.

解答 解:∵集合M={x|x2=x}={0,1},
N={x|1<2x<2}={x|0<x<1},
∴M∪N={x|0≤x≤1}=[0,1].
故选:D.

点评 本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),且满足$\sqrt{3}$cos2$\frac{α}{2}$+$\sqrt{2}$sin2$\frac{β}{2}$=$\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{3}}}{2}$,sin(2017π-α)=$\sqrt{2}$cos($\frac{5π}{2}$-β),则α+β=$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在新年联欢晚会上,游戏获胜者甲和乙各有一次抽奖机会,共有4个奖品,其中一等奖2个,二等奖2个,甲、乙二人依次各抽一次.
(Ⅰ)求甲抽到一等奖,乙抽到二等奖的概率;
(Ⅱ)求甲、乙二人中至少有一人抽到一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)为偶函数,且f(x)=f(x-4),在区间[0,2]上,f(x)=$\left\{\begin{array}{l}{-{x}^{2}-\frac{3}{2}x+5,0≤x≤1}\\{{2}^{x}+{2}^{-x},a<x≤2}\end{array}\right.$,g(x)=($\frac{1}{2}$)|x|+a,若F(x)=f(x)-g(x)恰好有4个零点,则a的取值范围是(  )
A.(2,$\frac{19}{8}$)B.(2,3)C.(2,$\frac{19}{8}$]D.(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i为虚数单位,则$\frac{1-i}{i^3}$=(  )
A.1+iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x3+x-1,则在下列区间中,f(x)一定有零点的是(  )
A.(-1,0)B.(0,1)C.(-2,-1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,已知角α的终边经过点P(-3,4)
(1)求sinα和cosα的值;
(2)求$tan(α+\frac{π}{4})$的值;
(3)求${sin^2}(α+\frac{π}{4})+sin(α+\frac{π}{4})•cos(α+\frac{π}{4})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若圆C1:x2+y2-2x=0与圆C2:(x+1)2+(y-2)2=r2(r>0)相切,则r等于2$\sqrt{2}$-1或2$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.观察以下不等式:
①1+$\frac{1}{2^2}$<$\frac{3}{2}$;
②1+$\frac{1}{2^2}$+$\frac{1}{3^2}$<$\frac{5}{3}$;
③1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$<$\frac{7}{4}$,
则第六个不等式是1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$+…+$\frac{1}{{7}^{2}}$<$\frac{13}{7}$.

查看答案和解析>>

同步练习册答案