精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.

(1)求证:AP∥平面MBD;

(2)若AD⊥PB,求证:BD⊥平面PAD.

【答案】(1)见解析;(2)见解析.

【解析】试题分析:(1)设 ,由中位线定理证得 平面;(2)由 平面 平面

试题解析:(1)设AC∩BD=H,连接MH,

∵H为平行四边形ABCD对角线的交点,∴H为AC中点,

又∵M为PC中点,∴MH为△PAC中位线,

可得MH∥PA,

MH平面MBD,PA平面MBD,

所以PA∥平面MBD.

(2)∵PD⊥平面ABCD,AD平面ABCD,

∴PD⊥AD,

又∵AD⊥PB,PD∩PB=D,

∴AD⊥平面PDB,结合BD平面PDB,得AD⊥BD

∵PD⊥BD,且PD、AD是平面PAD内的相交直线

∴BD⊥平面PAD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表:

方式

实施地点

大雨

中雨

小雨

模拟实验总次数

4次

6次

2次

12次

3次

6次

3次

12次

2次

2次

8次

12次

假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:

(Ⅰ)求甲、乙、丙三地都恰为中雨的概率;

(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD 中,AB∥CD AB⊥ADCD=2AB,平面PAD⊥底面ABCDPA⊥ADEF分别为CDPC的中点.求证:

1BE∥平面PAD

2)平面BEF⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市组织500名志愿者参加敬老活动,为方便安排任务将所有志愿者按年龄(单位:岁)分组,得到的频率分布表如下.现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人担任联系人.

年龄(岁)

频率

第1组

[25,30)

0.1

第2组

[30,35)

0.1

第3组

[35,40)

0.4

第4组

[40,45)

0.3

第5组

[45,50)

0.1

I)应分别在第1,2,3组中抽取志愿者多少人?

II)从这6人中随机抽取2人担任本次活动的宣传员,求至少有1人年龄在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校收集该校学生从家到学校的时间后,制作成如下的频率分布直方图:

(1)求的值及该校学生从家到校的平均时间;

(2)若该校因学生寝室不足,只能容纳全校的学生住校,出于安全角度考虑,从家到校时间较长的学生才住校,请问从家到校时间多少分钟以上开始住校.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的五面体中,OAB的中点,

平面

1)在图中过点O作平面,使得∥平面并说明理由;

(2)求直线DE与平面CBE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60), ...,[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;

(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;

(Ⅲ) 从成绩在[40,50)和[90,100]的学生中任选两人,求他们在同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立.当x1,x2∈[0,3],且x1≠x2时,都有 >0,给出下列命题:

① f(3)=0;

② 直线x=-6是函数y=f(x)的图象的一条对称轴;

③ 函数y=f(x)在[-9,-6]上为单调递减函数;

④ 函数y=f(x)在[-9,9]上有4个零点.

其中正确的命题是____________.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为.

1求函数的单调增区间;

2将函数的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若上至少含有10个零点,求的最小值.

查看答案和解析>>

同步练习册答案