精英家教网 > 高中数学 > 题目详情
7.△ABC中,AB=3,AC=4,∠BAC=60°,求BC.

分析 利用余弦定理即可求出边长BC.

解答 解:如图所示,
△ABC中,由余弦定理的推论可知:
BC2=AB2+AC2-2AB•AC•cos∠BAC
=9+16-2×3×4×$\frac{1}{2}$
=13;
所以BC=$\sqrt{13}$.

点评 本题考查余弦定理的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知直线l1:ax+3y-1=0,${l_2}:2x+({a^2}-a)y+3=0$,且l1⊥l2,则a=0或$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井.以节约勘探费用.勘探初期数据资料见如表:
井号I123456
坐标(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
钻探深度(km)2456810
出油量(L)407011090160205
(1)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(2)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是优质井的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知P、Q分别在射线y=x(x>0)和y=-x(x>0)上,且△POQ的面积为1,(0为原点),则线段PQ中点M的轨迹为(  )
A.双曲线x2-y2=1B.双曲线x2-y2=1的右支
C.半圆x2+y2=1(x<0)D.一段圆弧x2+y2=1(x>$\frac{{\sqrt{2}}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求经过点P(-3,0),Q(0,-2)的椭圆的标准方程,并求出椭圆的长轴长、短轴长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某程序框图如图所示,若运行该程序后输出的值是$\frac{9}{19}$,则整数t的值是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过抛物线$y=\frac{1}{4}{x^2}$的焦点B,离心率为$\frac{{2\sqrt{2}}}{3}$,直线l交椭圆于P,Q(异于点B)两点,且BP⊥BQ.
(1)求椭圆C的方程;
(2)求△BPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题正确的个数是(  )①已知p:?x∈R,方程ax2-2x+a=0有正实根,则¬p:?a∈R,方程ax2-2x+a=0有负实根
②?x∈R,x>0
③至少有一个整数,它既不是2的倍数,也不是3的倍数.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设等比数列{an}的前n项和Sn,若a2015=3S2014+2016,a2014=3S2013+2016,则公比q=(  )
A.2B.1或4C.4D.1或2

查看答案和解析>>

同步练习册答案