分析 (1)通过令t(x)=f(x)-g(x),利用“渐近函数”的定义逐条验证即可;
(2)通过记t(x)=f(x)-g(x),结合“渐近函数”的定义可知$\frac{2x}{\sqrt{{x}^{2}+1}}$<a,问题转化为求当x∈[0,+∞)时q(x)=$\frac{2x}{\sqrt{{x}^{2}+1}}$的最大值问题,进而计算可得结论.
解答 解:(1)证明:依题意,令t(x)=f(x)-g(x),
则t(x)=$\frac{x^2+2x+3}{x+1}$-(x+1)=$\frac{2}{x+1}$,
∵t′(x)=-$\frac{2}{(x+1)^{2}}$<0,
∴t(x)在区间[0,+∞)上单调递减,且$\underset{lim}{x→∞}$t(x)=0,
∴0<t(x)≤t(0)=2,
于是函数g(x)=x+1是函数f(x)=$\frac{x^2+2x+3}{x+1}$,
x∈[0,+∞)的渐近函数,此时实数p=2;
(2)解:记t(x)=f(x)-g(x)=$\sqrt{{x}^{2}+1}$-ax,
则t′(x)=$\frac{x}{\sqrt{{x}^{2}+1}}$-a,
∵函数f(x)=$\sqrt{{x}^{2}+1}$,x∈[0,+∞)的渐近函数是g(x)=ax,
∴当x∈[0,+∞)时t′(x)<0,即$\frac{x}{\sqrt{{x}^{2}+1}}$<a,
令函数q(x)=$\frac{x}{\sqrt{{x}^{2}+1}}$,其中x∈[0,+∞),
当x=0时,q(x)=0;
当x≠0时,q(x)=$\frac{x}{\sqrt{{x}^{2}+1}}$=$\frac{1}{\sqrt{\frac{{x}^{2}+1}{{x}^{2}}}}$=$\frac{1}{\sqrt{1+\frac{1}{{x}^{2}}}}$在区间(0,+∞)上单调递增,
且$\underset{lim}{x→∞}$q(x)=1,
∴a≥1.单调递增,
且$\underset{lim}{x→∞}$q(x)=1,
∴a≥1.
点评 本题考查新定义函数,涉及导数的计算,函数单调性及极限知识,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | |t1-t2| | B. | $\sqrt{{a^2}+{b^2}}|{{t_1}-{t_2}}|$ | C. | $\frac{{|{{t_1}-{t_2}}|}}{{\sqrt{{a^2}+{b^2}}}}$ | D. | $\frac{{|{{t_1}-{t_2}}|}}{{{a^2}+{b^2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
日期 | PM2.5浓度 | 日期 | PM2.5浓度 | 日期 | PM2.5浓度 |
11-1 | 137 | 11-11 | 144 | 11-21 | 40 |
11-2 | 143 | 11-12 | 166 | 11-22 | 42 |
11-3 | 145 | 11-13 | 197 | 11-23 | 35 |
11-4 | 193 | 11-14 | 194 | 11-24 | 53 |
11-5 | 133 | 11-15 | 219 | 11-25 | 88 |
11-6 | 22 | 11-16 | 41 | 11-26 | 29 |
11-7 | 22 | 11-17 | 90 | 11-27 | 199 |
11-8 | 57 | 11-18 | 46 | 11-28 | 287 |
11-9 | 111 | 11-19 | 80 | 11-29 | 291 |
11-10 | 134 | 11-20 | 67 | 11-30 | 452 |
空气质量指数类别 | PM2.5 24小时浓度均值 | 频数 | 频率 |
优 | 0-35 | 4 | $\frac{2}{15}$ |
良 | 36-75 | 7 | $\frac{7}{30}$ |
轻度污染 | 76-115 | 4 | |
中度污染 | 116-150 | 6 | |
重度污染 | 151-250 | ||
严重污染 | 251-500 | ||
合计 | / | 30 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6.5h | B. | 5.5h | C. | 3.5h | D. | 0.5h |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com