A. | $\frac{3π}{4}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | -sin1 | D. | -1 |
分析 先求出f(-1)=($\frac{4}{3π}$)-1=$\frac{3π}{4}$,从而f(f(-1))=f($\frac{3π}{4}$),由此能求出结果.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{sinx(x>0)}\\{(\frac{4}{3π})^{x}(x≤0)}\end{array}\right.$,
∴f(-1)=($\frac{4}{3π}$)-1=$\frac{3π}{4}$
f(f(-1))=f($\frac{3π}{4}$)=sin$\frac{3π}{4}$=sin$\frac{π}{4}=\frac{\sqrt{2}}{2}$.
故选:B.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com