【题目】如图1,在直角梯形中,AB∥CD,,且.现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,如图2.
(Ⅰ)求证:BC⊥平面DBE;
(Ⅱ)求点D到平面BEC的距离.
科目:高中数学 来源: 题型:
【题目】已知数据a1,a2,…,an的平均数为a,方差为s2,则数据2a1,2a2,…,2an的平均数和方差分别为( )
A. a,s2 B. 2a,s2
C. 2a,2s2 D. 2a,4s2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的公差d≠0满足成等比数列,若=1,Sn是{}的前n项和,则的最小值为________.
【答案】4
【解析】
成等比数列,=1,可得:= ,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入利用分离常数法化简后,利用基本不等式求出式子的最小值.
∵成等比数列,a1=1,
∴= ,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n﹣1)=2n﹣1.
Sn=n+×2=n2.
∴==n+1+﹣2≥2﹣2=4,
当且仅当n+1=时取等号,此时n=2,且取到最小值4,
故答案为:4.
【点睛】
本题考查了等差数列的通项公式、前n项和公式,等比中项的性质,基本不等式求最值,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.
【题型】填空题
【结束】
17
【题目】设是公比为正数的等比数列,,
(1)求的通项公式;
(2)设是首项为1,公差为2的等差数列,求数列的前项和
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=60°,D是BC上一点,AB=31,BD=20,AD=21.
(1)求cos∠B的值;
(2)求sin∠BAC的值和边BC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线l的参数方程为 (t为参数,0<α<π),以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ= (p>0).
(Ⅰ)写出直线l的极坐标方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A,B两点,求 + 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角坐标系中,圆与轴负半轴交于点,过点 的直线,分别与圆交于,两点.
(1)若,,求△的面积;
(2)过点作圆O的两条切线,切点分别为E,F,求;
(3)若,求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.
.求证:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE;(III)若PB与底面所成的角为600, AB=2a,求三棱锥E-BCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是东西方向的公路北侧的边缘线,某公司准备在上的一点的正北方向的处建设一仓库,设,并在公路北侧建造边长为的正方形无顶中转站(其中在上),现从仓库向和中转站分别修两条道路,已知,且.
(1)求关于的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元,两条道路造价为30万元,问:取何值时,该公司建设中转站围墙和两条道路总造价最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两校各有3名教师报名支教,期中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com