精英家教网 > 高中数学 > 题目详情
已知正方体ABCD-A′B′C′D′中,点E、F分别是棱BB′与面对角线B′D′的中点,求证:直线EF⊥直线A′D.
分析:直接建立空间直角坐标系,求出相关点的坐标,利用向量数量积,判断垂直即可.
解答:解:如图设正方体的棱长为:2,
所以A′(0,0,0),D(0,2,2),E(2,0,1),F(1,1,0),
所以
EF
=(-1,1,-1),
A′D
=(0,2,2)
所以
EF
A′D
=0+2-2=0.
所以
EF
A′D

所以直线EF⊥直线A′D.
点评:本题考查空间向量的数量积的计算判断空间直线的位置关系,考查空间想象能力逻辑推理计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P在平面DD1C1C内,PD1=PC1=
2
.求证:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,则四面体A1-C1BD在面A1B1C1D1上的正投影的面积与该四面体表面积之比是
3
6
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求证:C1O∥面AB1D1
(2)求异面直线AD1与 C1O所成角的大小.

查看答案和解析>>

同步练习册答案