精英家教网 > 高中数学 > 题目详情
(1)已知=(2x-y+1,x+y-2),=(2,-2),①当x、y为何值时,共线?②是否存在实数x、y,使得,且||=||?若存在,求出xy的值;若不存在,说明理由.
(2)设是两个单位向量,其夹角是90°,,若,求实数k的值.
【答案】分析:(1)①由共线,可得存在非零实数λ使得,从而可得结论;
②由得,(2x-y+1)×2+(x+y-2)×(-2)=0,由||=||得,(2x-y+1)2+(x+y-2)2=8,从而可得结论;
(2)利用向量的数量积公式,即可求实数k的值.
解答:解:(1)①∵共线,
∴存在非零实数λ使得

∴x=,y∈R;
②由得,(2x-y+1)×2+(x+y-2)×(-2)=0
所以x-2y+3=0.(i)
由||=||得,(2x-y+1)2+(x+y-2)2=8.(ii)
解(i)(ii)得
(2)由题意,,①,②
③…(10分)

,得,
将①②③代入得:k2+5k-1=0,…(12分)
解得…(14分)
点评:本题考查向量共线、垂直的条件的运用,考查数量积公式,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知
a
=(2x-y+1,x+y-2),
b
=(2,-2),①当x、y为何值时,
a
b
共线?②是否存在实数x、y,使得
a
b
,且|
a
|=|
b
|?若存在,求出xy的值;若不存在,说明理由.
(2)设
i
j
是两个单位向量,其夹角是90°,
a
=
i
+2
j
b
=-3
i
+
j
,若(k
a
-
b
)⊥(
a
+k
b
)
,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数y=
2x-4
(x≥2),求它的反函数.
(2)根据函数单调性的定义,证明函数f(x)=-x2+1在区间[0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知
2
sin(
π
4
+2x)-2cos2x=0
且0≤x≤π,求x的值;
(2)记f(x)=
2
sin(
π
4
+2x)-2cos2x
(x∈R),求f(x)的最大值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知
a
=(2x-y+1,x+y-2),
b
=(2,-2),
①当x、y为何值时,a与b共线?
②是否存在实数x、y,使得a⊥b,且|
a
|=|
b
|?若存在,求出xy的值;若不存在,说明理由.
(2)设
n
m
是两个单位向量,其夹角是60°,试求向量
a
=2
m
+
n
和b=-3
m
+2
n
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=2x+a,g(x)=(x2+3),若g[f(x)]=x2+x+1,求a的值.

(2)已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,若f()=0,求f(π)及f(2π).

查看答案和解析>>

同步练习册答案