精英家教网 > 高中数学 > 题目详情
设f(x)的定义域为[0,2],则函数f(x2)的定义域是(  )
分析:根据函数f(x)的定义域,解不等式0≤x2≤2,求出的解集即为函数y=f(x2)的定义域.
解答:解:∵函数y=f(x)的定义域为[0,2],
∴函数y=f(x2)满足x2∈[0,2],
解不等式0≤x2≤2,得-
2
≤x≤
2

即函数y=f(x2)的定义域是[-
2
2
]
故选:A
点评:本题给出f(x)的定义域,求函数f(x2)的定义域.考查了函数的定义域及其求法和不等式的解法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)的定义域为(0,+∞),f(x)的导函数为f′(x),且对任意正数x均有f′(x)>
f(x)
x

(Ⅰ)判断函数F(x)=
f(x)
x
在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),比较f(x1)+f(x2)与f(x1+x2)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、设F(x)的定义域为R,且满足F(ab)=F(a)F(b),其中F(2)=8.定义在R上的函数f(x)满足下述条件:①f(x)是奇函数;②f(x+2)是偶函数;③在[-2,2]上,f(x)=F(x)
(1)设G(x)=f(x+4),判断G(x)的奇偶性并证明;(2)解关于x的不等式:f(x)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)的定义域为D,若f(x)满足下面两个条件,则称f(x)为闭函数,[a,b]为函数f(x)的闭区间.①f(x)在D内是单调函数;②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].
(1)写出f(x)=x3的一个闭区间;
(2)若f(x)=
13
x3-k为闭函数求k取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)的定义域为D,f(x)满足下面两个条件,则称f(x)为闭函数.
①f(x)在D内是单调函数;
②存在[a,b]⊆D,f(x)在[a,b]上的值域为[a,b].
如果f(x)=
2x+1
+k
为闭函数,那么k的取值范围是
-1<k≤-
1
2
-1<k≤-
1
2

查看答案和解析>>

同步练习册答案