精英家教网 > 高中数学 > 题目详情
4.若函数f(x)=loga(x-3)+2(a>0且a≠1)的图象过定点(m,n),则logmn=$\frac{1}{2}$.

分析 令x-3=1,可得函数f(x)=loga(x-3)+2(a>0且a≠1)的图象过定点坐标,进而得到答案.

解答 解:令x-3=1,则x=4,
则f(4)=2恒成立,
即函数f(x)=loga(x-3)+2(a>0且a≠1)的图象过定点(4,2),
即m=4,n=2,
∴logmn=log42=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$.

点评 本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2+2ax+1.
(1)求f(x)在区间[-1,2]的最小值g(a);
(2)求f(x)在区间[-1,2]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若两圆C1:(x-a12+(y-b12=r2、C2:(x-a22+(y-b22=r2相离,则曲线系[(x-a12+(y-b12-r2]+λ[(x-a22+(y-b22-r2]=0,当λ=-1时表示的曲线与圆C1、圆C2的位置关系是怎样的?请你给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=\frac{x}{x+1}$,则$f(2)+f(3)+…+f(10)+f(\frac{1}{2})+f(\frac{1}{3})+…+f(\frac{1}{10})$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若f(x)=x2+bx+c对任意实数x都有f(a+x)=f(a-x),则(  )
A.f(a)<f(a-1)<f(a+2)B.f(a-1)<f(a)<f(a+2)C.f(a)<f(a+2)<f(a-1)D.f(a+2)<f(a)<f(a-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知各项均为正数的数列{an}的前n项和为Sn,且a${\;}_{n}^{2}+{a}_{n}$=2Sn
(1)求数列{an}的通项;
(2)若bn=$\frac{1}{{a}_{n}^{2}}$(n∈N+),Tn=b1+b2+…+bn,求证:Tn$<\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用分数指数幂的形式表示$\sqrt{-a}$•a为(  )
A.-${a}^{\frac{3}{2}}$B.-$(-a)^{\frac{3}{2}}$C.-$(-a)^{\frac{2}{3}}$D.-${a}^{\frac{3}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆x2+y2=5与圆x2+y2+2x-3=0的交点坐标是(1,2),(1,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.判断下列函数的奇偶性:
(1)f(x)=$\sqrt{2}$sin(2x+$\frac{5}{2}π$);
(2)f(x)=1g(sinx+$\sqrt{1+si{n}^{2}x}$).

查看答案和解析>>

同步练习册答案