【题目】《周髀算经》中给出了:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二节气的日影长依次成等差数列的结论.已知某地立春与雨水两个节气的日影长分别为尺和尺,现在从该地日影长小于尺的节气中随机抽取个节气进行日影长情况统计,则所选取这个节气中恰好有个节气的日影长小于尺的概率为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】如图,是抛物线的焦点,过点且与坐标轴不垂直的直线交抛物线于、两点,交抛物线的准线于点,其中,.过点作轴的垂线交抛物线于点,直线交抛物线于点.
(1)求的值;
(2)求四边形的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,为两个平面,命题:的充要条件是内有无数条直线与平行;命题:的充要条件是内任意一条直线与平行,则下列说法正确的是( )
A.“”为真命题B.“”为真命题
C.“”为真命题D.“”为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对于线上教育进行调查,其中男生与女生的人数之比为,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.
(1)完成列联表,并回答能否有99%的把握认为对“线上教育是否满意与性别有关”;
满意 | 不满意 | 总计 | |
男生 | |||
女生 | |||
合计 | 120 |
(2)从被调查中对线上教育满意的学生中,利用分层抽样抽取8名学生,再在8名学生中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.
参考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.842 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点、分别为双曲线的左、右焦点,双曲线的离心率为,点在双曲线上,不在轴上的动点与动点关于原点对称,且四边形的周长为.
(1)求动点的轨迹的方程;
(2)过点的直线交的轨迹于,两点,为上一点,且满足,其中,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为抛物线的焦点,过点任作两条互相垂直的直线,,分别交抛物线于,,,四点,,分别为,的中点.
(1)求证:直线过定点,并求出该定点的坐标;
(2)设直线交抛物线于,两点,试求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )
A. B. C. D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.
(1)求椭圆的离心率;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,以原点为圆心,椭圆的长半轴为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知点, 为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com