精英家教网 > 高中数学 > 题目详情
16.已知定义在R上的函数f(x),对于任意实数x,y都满足f(x+y)=f(x)•f(y),且f(1)≠0,当x>0时,f(x)>1
(1)求f(0)的值;
(2)证明f(x)在(-∞,+∞)上是增函数.

分析 (1)利用赋值法,即可求f(0)的值;
(2)利用函数单调性的定义,结合抽象函数的关系进行证明即可.

解答 (1)解:对于任意实数x,y都满足f(x+y)=f(x)•f(y),
令x=1,y=0,则f(1)=f(1)f(0),
∵f(1)≠0,∴f(0)=1.
(2)证明:当x<0,则-x>0,
则f(x)•f(-x)=f(x-x)=f(0)=1,
则f(-x)>0,则f(x)>0,
即f(x)>0恒成立
设x1,x2∈R,且x2<x1,则x1-x2>0,
∴f(x1-x2)=$\frac{f({x}_{1})}{f({x}_{2})}>1$,
∵对任意的x,y∈R,总有f(x)>0,
∴f(x1)>f(x2),
即f(x)在R上为增函数.

点评 本题主要考查函数单调性的判断以及函数最值的求解,根据抽象函数的关系,利用赋值法是解决抽象函数的基本方法,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知圆C:x2+(y-t)2=t被直线y=3截得的弦长为2$\sqrt{3}$,直线l:y=kx与圆C交于两点M,N.
(1)求圆C的方程;
(2)设O为原点,点P(m,n)在线段MN上,且$\frac{2}{|OP{|}^{2}}$=$\frac{1}{|OM{|}^{2}}$+$\frac{1}{|ON{|}^{2}}$,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设A={x|-1≤x≤a},(a>-1),B={y|y=x+1,x∈A}.C={y|y=x2,x∈A},若 B=C,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.从我市某企业生产的某种产品中抽取20件,测量这些产品的一项质量指标值,测量的原始数据已丢失,只余下频数分布表如下:
质量指标值分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
频数234542
(Ⅰ)请你填写下面的频率分布表:若规定“质量指标值不低于30的产品为合格产品”,则该企业生的这种产品的合格率是多少?
质量指标值分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
频数0.150.2
(Ⅱ)请你估计这种产品质量指标值的众数、平均数、中位数的值(同一组中的数据用该组区间的中间值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在正方体ABCD-A1B1C1D1中,E、F分别是A1A、A1B1的中点,求EF与平面A1ACC1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x=$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$,y=$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$,则3x2-5xy+3y2的值是289.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x>2},下图中阴影部分所表示的集合为(  )
A.{1}B.{0,1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,既是偶函数,又在(0,+∞)单调递增的函数是(  )
A.y=|lgx|B.y=2-|x|C.y=|$\frac{1}{x}$|D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数z=4i2016-$\frac{5i}{1+2i}$(其中i为虚数单位)对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案