精英家教网 > 高中数学 > 题目详情
8.函数$f(x)=sin({\frac{π}{3}x+\frac{1}{3}})$的最小正周期为6.

分析 直接利用周期公式,即可得出结论.

解答 解:函数$f(x)=sin({\frac{π}{3}x+\frac{1}{3}})$的最小正周期为T=$\frac{2π}{\frac{π}{3}}$=6,
故答案为6.

点评 本题考查三角函数周期的求法,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数y=f(x)的图象与直线y=-x+8相切于点(5,f(5)),则f(5)+f'(5)等于(  )
A.1B.2C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合M={(x,y)|y=-x+1},N={(x,y)|y=x-1},那么M∩N为{(1,0)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.持续高温使漳州市多地出现气象干旱,城市用水紧张,为了宣传节约用水,某人准备在一片扇形区域(如图3)上按照图4的方式放置一块矩形ABCD区域宣传节约用水,其中顶点B,C在半径ON上,顶点A在半径OM上,顶点D在$\widehat{NM}$上,∠MON=$\frac{π}{6}$,ON=OM=10,m,设∠DON=θ,矩形ABCD的面积为S.

(Ⅰ)用含θ的式子表示DC,OB的长‘
(Ⅱ)若此人布置1m2的宣传区域需要花费40元,试将S表示为θ的函数,并求布置此矩形宣传栏最多要花费多少元钱?(精确到0.01)
(参考数据:$\sqrt{3}$≈1.732,$\sqrt{2}$≈1.414)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|-1<x<5},B={x|x2≥4},则∁R(A∪B)=(  )
A.(-2,-1)B.(2,5)C.(-2,-1]D.(-∞,2)∪[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.计算:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{7}{8}$)0+[(-2)3]${\;}^{-\frac{4}{3}}$+16${\;}^{-\frac{3}{4}}$+|-0.01|${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在R上的函数f(x)满足f(x+2)=f(x),且f(cosθ)=cos2θ,则f(2017)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设p:实数x满足x2-4ax+3a2<0(其中a>0),q:2<x≤3.若p是q的必要不充分条件,则实数a的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于常数m、n,“mn<0”是“方程mx2+ny2=10的曲线是双曲线”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案