精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=
2
2
3
,a=2,S△ABC=
2
,则b的值为(  )
分析:在锐角△ABC中,利用sinA=
2
2
3
,S△ABC=
2
,可求得bc,在利用a=2,由余弦定理可求得b+c,解方程组可求得b的值.
解答:解:∵在锐角△ABC中,sinA=
2
2
3
,S△ABC=
2

1
2
bcsinA=
1
2
bc
2
2
3
=
2

∴bc=3,①
又a=2,A是锐角,
∴cosA=
1-sin2A
=
1
3

∴由余弦定理得:a2=b2+c2-2bccosA,
即(b+c)2=a2+2bc(1+cosA)=4+6(1+
1
3
)=12,
∴b+c=2
3

由①②得:
b+c=2
3
bc=3

解得b=c=
3

故选A.
点评:本题考查正弦定理与余弦定理的应用,考查方程思想与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且tanC=
aba2+b2-c2

(Ⅰ)求角C大小;
(Ⅱ)当c=1时,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•张掖模拟)在锐角△ABC中,角A、B、C所对的边分别为a、b、c.且
a-c
b-c
=
sinB
sinA+sinC

(1)求角A的大小及角B的取值范围;
(2)若a=
3
,求b2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2sin
x
2
,-1),
OQ
=(cosx+f(x),sin(
π
2
-
x
2
)),且
OP
OQ

(1)求函数f(x)的表达式,并指出f(x)的单调递减区间;
(2)在锐角△ABC中,角A、B、C所对的边分别为a,b,c,且f(A)=-
2
,bc=8
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知b2=ac且sinAsinC=
34

(Ⅰ)求角B的大小.
(Ⅱ)求函数f(x)=sin(x-B)+sinx(0≤x<π)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知cos2C=-
3
4

(Ⅰ)求sinC;
(Ⅱ)当c=2a,且b=3
7
时,求a及△ABC的面积.

查看答案和解析>>

同步练习册答案