精英家教网 > 高中数学 > 题目详情

【题目】已知不等式的解集为.

1)求;(2)解关于的不等式

【答案】1a1b2;(2)①当c2时,解集为{x|2xc};②当c2时,解集为{x|cx2};③当c2时,解集为

【解析】

1)根据不等式ax23x+64的解集,利用根与系数的关系,求得ab的值;

2)把不等式ax2﹣(ac+bx+bc0化为x2﹣(2+cx+2c0,讨论c的取值,求出对应不等式的解集.

1)因为不等式ax23x+64的解集为{x|x1,或xb}

所以1b是方程ax23x+20的两个实数根,且b1

由根与系数的关系,得

解得a1b2

2)所求不等式ax2﹣(ac+bx+bc0化为x2﹣(2+cx+2c0

即(x2)(xc)<0

①当c2时,不等式(x2)(xc)<0的解集为{x|2xc}

②当c2时,不等式(x2)(xc)<0的解集为{x|cx2}

③当c2时,不等式(x2)(xc)<0的解集为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,若曲线C1的方程为ρsin(θ+ )+2 =0,曲线C2的参数方程为 (θ为参数).
(1)将C1的方程化为直角坐标方程;
(2)若点Q为C2上的动点,P为C1上的动点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国古代数学名著《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”.已知三棱维中,底面.

(1)从三棱锥中选择合适的两条棱填空_________⊥________,则该三棱锥为“鳖臑”;

(2)如图,已知垂足为,垂足为.

(i)证明:平面⊥平面;

(ii)作出平面与平面的交线,并证明是二面角的平面角.(在图中体现作图过程不必写出画法)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年电子商务蓬勃发展,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.70,对快递的满意率为0.60,商品和快递都满意的交易为80

(Ⅰ)根据已知条件完成下面的列联表,并回答能否有99%认为网购者对商品满意与对快递满意之间有关系”?

对快递满意

对快递不满意

合计

对商品满意

80

对商品不满意

合计

200

(Ⅱ)若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和快递都满意的次数为随机变量,求的分布列和数学期望.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.

1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;

(2)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f( )|对x∈R恒成立,且f( )>f(π),则f(x)的单调递增区间是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机支付也称为移动支付,是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图.

组数

第l组

第2组

第3组

第4组

第5组

分组

频数

20

36

30

10

4

(1)求

(2)从第l,3,4组中用分层抽样的方法抽取6人,求第l,3,4组抽取的人数:

(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某精密仪器生产有两道相互独立的先后工序,每道工序都要经过相互独立的工序检查,且当第一道工序检查合格后才能进入第二道工序,两道工序都合格,产品才完全合格,.经长期监测发现,该仪器第一道工序检查合格的概率为 ,第二道工序检查合格的概率为 ,已知该厂三个生产小组分别每月负责生产一台这种仪器.
(1)求本月恰有两台仪器完全合格的概率;
(2)若生产一台仪器合格可盈利5万元,不合格则要亏损1万元,记该厂每月的赢利额为ξ,求ξ的分布列和每月的盈利期望.

查看答案和解析>>

同步练习册答案