精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,点P到两点(0,),(0,)的距离之和为4,设点P的轨迹为C,直线ykx+1A交于AB两点.

1)写出C的方程;

2)若,求k的值.

【答案】1x21;(2±

【解析】

1)根据已知条件可判断动点轨迹为椭圆,结合题意写出椭圆方程即可;

2)联立直线方程与椭圆方程,根据韦达定理以及向量垂直,即可求得参数.

1)设Px,y),由椭圆定义可知,

P的轨迹C是以(0,),(0,)为焦点,长半轴为2的椭圆.

它的短半轴b1

故曲线C的方程为x21.

2)设Ax1,y1),Bx2,y2),

其坐标满足

消去y并整理得(k2+4x2+2kx30

x1+x2x1x2

,即x1x2+y1y20.

y1y2k2x1x2+kx1+x2+1

x1x2+y1y210

化简得﹣4k2+10

解得k±.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的左、右焦点分别为,点P在椭圆上,,椭圆的离心率.

1)求椭圆C的标准方程;

2AB是椭圆C上与点P不重合的任意两点,若的重心是坐标原点O,试证明:的面积为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列椭圆的标准方程:

1)焦点在轴上,离心率,且经过点

2)以坐标轴为对称轴,且长轴长是短轴长的倍,并且过点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且处切线垂直于轴.

1)求的值;

2)求函数上的最小值;

3)若恒成立,求满足条件的整数的最大值.

(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数);以原点极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

⑴ 求曲线的普通方程与曲线的直角坐标方程;

⑵ 试判断曲线是否存在两个交点,若存在求出两交点间的距离;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉在所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律,现把杨辉三角中的数从上到下,从左到右依次排列,得数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,记作数列,若数列的前项和为,则_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,且过点.

1)求椭圆C的方程;

2)直线l交椭圆C于不同的两点AB,且中点E在直线上,线段的垂直平分线交y轴于点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列叙述:

①正四面体的棱长为是棱的中点,则异面直线所成角的余弦值是

②在等比数列中前项和为,前项和为,则前项和为

③直线关于直线对称的直线方程为

④若,且,则的最小值为

其中所有正确叙述的序号是_____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”《中华人民共和国道路交通安全法》第条规定:对不礼让行人的驾驶员处以扣分,罚款元的处罚.下表是某市一主干路口监控设备所抓拍的个月内驾驶员不“礼让斑马线”行为统计数据:

月份

不“礼让斑马线”驾驶员人数

1)请利用所给数据求不“礼让斑马线”驾驶员人数与月份之间的回归直线方程,并预测该路口月份的不“礼让斑马线”驾驶员人数;

2)若从表中月份和月份的不“礼让斑马线”驾驶员中,采用分层抽样方法抽取一个容量为的样本,再从这人中任选人进行交规调查,求抽到的两人恰好来自同一月份的概率.

参考公式:.

参考数据:.

查看答案和解析>>

同步练习册答案