精英家教网 > 高中数学 > 题目详情

【题目】已知集合

1)判断8910是否属于集合

2)已知集合,证明:“”的充分非必要条件是“”;

3)写出所有满足集合的偶数.

【答案】1;(2)详见解析;(3)所有满足集合的偶数为

【解析】

1)将分别代入关系式,若满足关系式,则属于,若不满足关系式,则不属于,即可得答案;

2)根据已知中集合的定义,根据集合元素与集合关系的判断,我们推证奇数可得答案;

3成立,当同奇或同偶时,均为偶数;当一奇,一偶时,均为奇数.由此能求出所有满足集合的偶数.

1

假设,则,且

,或,显然均无整数解,

2集合,则恒有

即一切奇数都属于

”的充分非必要条件是“”;

3)集合成立,

①当同奇或同偶时,均为偶数,4的倍数;

②当一奇,一偶时,均为奇数,为奇数,

综上所有满足集合的偶数为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为推动文明城市创建,提升城市整体形象,20181230日盐城市人民政府出台了《盐城市停车管理办法》,201931日起施行.这项工作有利于市民养成良好的停车习惯,帮助他们树立绿色出行的意识,受到了广大市民的一致好评.现从某单位随机抽取80名职工,统计了他们一周内路边停车的时间t(单位:小时),整理得到数据分组及频率分布直方图如下:

1)从该单位随机选取一名职工,试估计这名职工一周内路边停车的时间少于8小时的概率;

2)求频率分布直方图中ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集具有性质;对任意的,与两数中至少有一个属于

1)分别判断数集是否具有性质,并说明理由;

2)证明:,且

3)当时,若,求集合

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

的单调区间;

证明:其中e是自然对数的底数,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,EFGH分别是的中点.

1)证明:平面

2)证明:平面平面.

3)求直线AE与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有2个分厂生产某种零件,为了研究两个分厂生产零件的质量是否有差异,随机从2个分厂生产的零件中各抽取了500件,具体数据如下表所示:

甲厂

乙厂

总计

优质品

360

320

680

非优质品

140

180

320

总计

500

500

1000

根据表中数据得的观测值,从而断定两个分厂生产零件的质量有差异,那么这种判断出错的最大可能性为(

附表:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

A.0.1B.0.01C.0.05D.0.001

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生 450 人)中,采用分层抽样的方法从中抽取名学生进行调查.

(1)已知抽取的名学生中含女生45人,求的值及抽取到的男生人数;

(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的列联表. 请将列联表补充完整,并判断是否有 99%的把握认为选择科目与性别有关?说明你的理由;

(3)在抽取的选择“地理”的学生中按分层抽样再抽取6名,再从这6名学生中抽取2人了解学生对“地理”的选课意向情况,求2人中至少有1名男生的概率.

0.05

0.01

3.841

6.635

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数时有最大值和最小值,设.

1)求实数的值;

2)若不等式上恒成立,求实数的取值范围;

3)若关于的方程有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求曲线在点处的切线方程;

(2)对任意的,恒有,求正数的取值范围.

查看答案和解析>>

同步练习册答案