精英家教网 > 高中数学 > 题目详情
20.若不等式${x^2}-{log_m}^x<0(m>0$且m≠1)在(0,$\frac{1}{2}$)内恒成立,求实数 m 的取值范围(  )
A.(0,$\frac{1}{4}$)B.[$\frac{1}{4}$,1)C.($\frac{1}{16}$,1)D.[$\frac{1}{16}$,1)

分析 不等式${x^2}-{log_m}^x<0(m>0$且m≠1)在(0,$\frac{1}{2}$)内恒成立?${lo{g}_{m}}^{x}$>x2在(0,$\frac{1}{2}$)内恒成立,利用对数函数的单调性可得${lo{g}_{m}}^{\frac{1}{2}}$≥${(\frac{1}{2})}^{2}$=$\frac{1}{4}$,继而可求得实数 m 的取值范围.

解答 解:∵${x^2}-{log_m}^x<0(m>0$且m≠1)在(0,$\frac{1}{2}$)内恒成立,
∴${lo{g}_{m}}^{x}$>x2在(0,$\frac{1}{2}$)内恒成立,∴0<m<1,
且${lo{g}_{m}}^{\frac{1}{2}}$≥${(\frac{1}{2})}^{2}$=$\frac{1}{4}$,
∴${m}^{\frac{1}{4}}$≥$\frac{1}{2}$,
∴m≥$\frac{1}{16}$,又0<m<1,
∴实数 m 的取值范围为[$\frac{1}{16}$,1).
故选:D.

点评 本题考查函数恒成立问题,考查对数函数的单调性质的理解与应用,得到${lo{g}_{m}}^{\frac{1}{2}}$≥${(\frac{1}{2})}^{2}$=$\frac{1}{4}$是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设集合A={-1,1,3},B={a+2,4},A∩B={3},则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线$\sqrt{3}x+y-2=0$的倾斜角为(  )
A.30oB.150oC.60oD.120o

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知平面内一动点M到点F(1,0)距离比到直线x=-3的距离小2.设动点M的轨迹为C.
(1)求曲线C的方程;
(2)若过点F的直线l与曲线C交于A、B两点,过点B作直线:x=-1的垂线,垂足为D,设A(x1,y1),B(x2,y2).
求证:①x1•x2=1,y1•y2=-4;      ②A、O、D三点共线 (O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转的速度而变化,如表为抽样试验结果:
转速x(转/秒)1614128
每小时生产有
缺点的零件数y(件)
11985
(1)用相关系数r对变量y与x进行相关性检验;
(2)如果y与x有线性相关关系,求线性回归方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?(结果保留整数)
参考数据:$\sum_{i=1}^{4}$xiyi=438,t=m2-1,$\sum_{i=1}^{4}$yi2=291,$\sqrt{656.25}$≈25.62.
参考公式:相关系数计算公式:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}•\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.是否存在实数 a,使函数f(x)=cos2x+2asinx+3a-1在闭区间上的最大值为 4,若存在,则求出对应的 a 值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在四面体ABCD中,AB=CD=2,AB与CD所成的角为45°,点E,F,G,H分别在棱EC,BD,BC,AC上,若直线AB,CD都平行于平面EFGH,则四边形EFGH面积的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若集合A={1,2,3},B={0,1,2},则A∩B=(  )
A.{0,1,2,3}B.{0,1,2}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源是中国古代数学家祖冲之的圆周率,为庆祝该节日,某校举办的数学嘉年华活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得5个学豆、10个学豆、20个学豆的奖励,游戏还规定,当选手闯过一关后,可以选择带走相应的学豆,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲第一关、第二关、第三关的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,选手选择继续闯关的概率均为$\frac{1}{2}$,且各关之间闯关成功互不影响
(1)求选手获得5个学豆的概率;
(2)求选手甲第一关闯关成功且所得学豆为零的概率.

查看答案和解析>>

同步练习册答案