精英家教网 > 高中数学 > 题目详情
袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是
2
3

(1)求n的值;
(2)(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.记事件A表示“a+b=2”,求事件A的概率.
考点:列举法计算基本事件数及事件发生的概率
专题:概率与统计
分析:(1)由古典概型公式可得关于n的方程,解之即可;(2)由条件列举出所有可能的基本事件,找出符合的有几个,即可的答案.
解答: 解:(1)由题意可知:
n
1+1+n
=
2
3
,解得n=4.
(2)不放回地随机抽取2个小球的所有等可能基本事件为:
(0,1),(0,21),(0,22),(0,23),(0,24),
(1,0),(1,21),(1,22),(1,23),(1,24),
(21,0),(21,1),(21,22),(21,23),(21,24),
(22,0),(22,1),(22,21),(21,23),(21,24),
(23,0),(23,1),(23,21),(23,22),(23,24),
(24,0),(24,1),(24,21),(24,22),(24,23),
共30个,
事件A包含的基本事件为:(0,21),(0,22),(0,23),(0,24),(21,0),(22,0),(23,0),(24,0),共8个.
故事件A的概率P(A)=
8
30
=
4
15
点评:本题为古典概型的求解,数准基本事件数是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(x-x1)(x-x2)(x-x3),x1,x2,x3∈R,且x1<x2<x3
(Ⅰ)当x1=0,x2=1,x3=2时,若方程f(x)=mx恰存在两个相等的实数根,求实数m的值;
(Ⅱ)求证:方程f′(x)=0有两个不相等的实数根;
(Ⅲ)若方程f'(x)=0的两个实数根是α,β(α<β),试比较
x1+x2
2
与α,β的大小并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=0x(2t+2)dt+alnx
(1)当a=-4时,求函数f(x)的最小值;
(2)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线方程是y=
3
x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程为(  )
A、
x2
36
-
y2
108
=1
B、
x2
108
-
y2
36
=1
C、
x2
9
-
y2
27
=1
D、
x2
27
-
y2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面ABCD是正方形,PA=AB,E为PO的中点.
(1)求证:PB∥平面EAC;
(2)求异面直线AE与PB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校为了了解新的一轮教改模式有效性的“认可度”,在全校师生(可认为很多人)进行了“认可度”的问卷调查,现随机抽查50名师生,对他们的“认可度”统计分析得如图
(1)求这50名师生的“认可度”的平均值(每一区间取中点值计算)
(2)设表中个区间“认可度”分数的中点值构成集合A,那么从集合A中任取一值,记下该值后放回,然后再随机任选一个又记下该值后又放回,设第一次的值记为x,第二次的值记为y,求y>x的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx-
3
cosx,若f(x1)f(x2)=-4,则|x1+x2|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆(x-3)2+(y-4)2=4上的点到直线x+y-14=0的最大距离
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线的极坐标方程为ρsin(θ-
π
4
)=
2
,曲线C的参数方程为
x=1+
2
cosθ
y=-1+
2
sinθ
(θ为参数),则曲线C上的点到直线的最大距离为
 

查看答案和解析>>

同步练习册答案