精英家教网 > 高中数学 > 题目详情

【题目】某地区对当地的某种土特产的销售量y(吨)和销售单价x(元/千克)之间的关系进行了调查,得到下表中的数据:

销售单价x(元/千克)

11

10.5

10

9.5

9

8

销售量y(吨)

5

6

8

10

11

14.1

1)根据前5组数据,求出y关于x的回归直线方程.

2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5,则认为回归直线方程是理想的,试问(1)中得到的回归直线方程是否理想?

3)如果销售量y(吨)和销售单价x(元/千克)之间仍然服从(1)中的关系,进货成本为2.5/千克,且货源充足(未售完的部分可按成本价全部售出),为了使利润最大,请你就如何确定销售单价给出合理建议.(每千克销售单价不超过12元)

参考公式:回归直线方程,其中

参考数据:

【答案】1;(2)可以认为该回归直线方程是理想的;(3)将销售单价定为7.5/千克可使利润最大.

【解析】

1)由题意计算出,代入公式可得,即可得y关于x的回归直线方程;

2)把代入回归直线方程可得,再由0.5比较即可得解;

3)设销售利润为W(千元),由题意可得关于x的函数表达式,再利用基本不等式即可得解.

1)因为,,

所以

所以

所以y关于x的回归直线方程为

2)当时,,则

所以可以认为该回归直线方程是理想的;

3)设销售利润为W(千元),

因为销售量y(吨)和销售单价x(元/千克)之间满足

所以

因为,所以

当且仅当时,W取得最大值,

所以将销售单价定为7.5/千克可使利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,直线l1的参数方程为t为参数),直线l2的参数方程为.设l1l2的交点为P,当k变化时,P的轨迹为曲线C.

(1)写出C的普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3ρ(cosθ+sinθ) =0,Ml3C的交点,求M的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆的右焦点、右顶点分别为FA,过原点的直线与椭圆C交于点PQ(点P在第一象限内),连结PAQF的面积是面积的3倍.

1)求椭圆C的标准方程;

2)已知M为线段PA的中点,连结QAQM

①求证:QFM三点共线;

②记直线QPQMQA的斜率分别为,若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学名著《九章算术》中记载:“刍(chú)甍(méng)者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”若刍甍的三视图如图所示,主视图是上底为2,下底为4,高为1的等腰梯形,左视图是底边为2的等腰三角形,则该几何体的体积为( .

A.B.C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参考方程为为参数).

(1)求曲线上的点到直线的距离的最大值与最小值;

(2)过点与直线平行的直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调区间和极值;

2)若存在满足,证明成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,点是线段的中点,将分别沿

向上折起,使重合于点,得到三棱锥.试在三棱锥中,

1)证明:平面平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是首项为1的等差数列,数列是公比不为1的等比数列,且满足

1)求数列的通项公式;

2)令,记数列的前n项和为,求证:对任意的,都有

3)若数列满足,记,是否存在整数,使得对任意的 都有成立?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为(

A.20°B.40°

C.50°D.90°

查看答案和解析>>

同步练习册答案