精英家教网 > 高中数学 > 题目详情
6.函数f(x)=sin(ωx+$\frac{π}{4}$)cos(ωx-$\frac{π}{4}$)+cos(ωx+$\frac{π}{4}$)sin(ωx-$\frac{π}{4}$)(ω>0)的最小正周期为24π,则f(π)=$\frac{\sqrt{6}-\sqrt{2}}{4}$.

分析 由条件利用两角和差的正弦公式化简f(x)的解析式,再利用正弦函数的周期性求得ω的值,可得f(π)=sin$\frac{π}{12}$=sin($\frac{π}{3}$-$\frac{π}{4}$)的值.

解答 解:∵函数f(x)=sin(ωx+$\frac{π}{4}$)cos(ωx-$\frac{π}{4}$)+cos(ωx+$\frac{π}{4}$)sin(ωx-$\frac{π}{4}$)
=sin[(ωx+$\frac{π}{4}$)+(ωx-$\frac{π}{4}$)]=sinωx 的最小正周期为24π,
∴$\frac{2π}{ω}$=24π,∴ω=$\frac{1}{12}$,f(x)=sin$\frac{x}{12}$,
则f(π)=sin$\frac{π}{12}$=sin($\frac{π}{3}$-$\frac{π}{4}$)=sin$\frac{π}{3}$cos$\frac{π}{4}$-cos$\frac{π}{3}$sin$\frac{π}{4}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
故答案为:$\frac{\sqrt{6}-\sqrt{2}}{4}$.

点评 本题主要考查两角和差的正弦公式,正弦函数的周期性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数y=$\frac{2}{{e}^{x}+1}$在点(0,1)处切线的斜率为(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)在R上单调递增,当x1+x2=1时,恒有f(x1)+f(0)>f(x2)+f(1),则x1的取值范围是(  )
A.(-∞,0)B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.方程cosx=-$\frac{x}{6}$的根的个数(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在椭圆$\frac{{x}^{2}}{2}$+y2=1中,弦长为2的弦的中点的轨迹方程为10x4y2-8x2y4-3x6-8y4-4x2y2=0(-$\sqrt{2}$<x<$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是        (  )
A.4SB.4πSC.πSD.2πS

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果圆锥的侧面展开图是半圆,那么这个圆锥的轴截面对应的等腰三角形的底角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知F1、F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点,过F1且垂直于x轴的直线与椭圆交于M,N两点,若△MNF2为等腰直角三角形,则椭圆的离心率e为$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=sin(4x-\frac{π}{6})+\sqrt{3}sin(4x+\frac{π}{3})$
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)将函数y=f(x)的图象向左平移$\frac{π}{48}$个单位,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在[-π,0]上的值域.

查看答案和解析>>

同步练习册答案