分析 由条件利用两角和差的正弦公式化简f(x)的解析式,再利用正弦函数的周期性求得ω的值,可得f(π)=sin$\frac{π}{12}$=sin($\frac{π}{3}$-$\frac{π}{4}$)的值.
解答 解:∵函数f(x)=sin(ωx+$\frac{π}{4}$)cos(ωx-$\frac{π}{4}$)+cos(ωx+$\frac{π}{4}$)sin(ωx-$\frac{π}{4}$)
=sin[(ωx+$\frac{π}{4}$)+(ωx-$\frac{π}{4}$)]=sinωx 的最小正周期为24π,
∴$\frac{2π}{ω}$=24π,∴ω=$\frac{1}{12}$,f(x)=sin$\frac{x}{12}$,
则f(π)=sin$\frac{π}{12}$=sin($\frac{π}{3}$-$\frac{π}{4}$)=sin$\frac{π}{3}$cos$\frac{π}{4}$-cos$\frac{π}{3}$sin$\frac{π}{4}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
故答案为:$\frac{\sqrt{6}-\sqrt{2}}{4}$.
点评 本题主要考查两角和差的正弦公式,正弦函数的周期性,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,0) | B. | (0,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com