【题目】运输公司年有万辆公交车,计划年投入辆新型号公交车,以后每年投入的新型号公交车数量均比上年增加.
(1)年应投入多少辆新型号公交车?
(2)从年到年间共投入多少辆新型号公交车?
(3)从哪一年开始,该公司新型号公交车总量超过该公司公交车总量的?
【答案】(1)辆;(2)辆;(3)到年底.
【解析】
(1)设从第年开始第年投入的车辆数为,可知数列是以为首项,以为公比的等比数列,由此可计算出年投入的新型号公交车辆;
(2)利用等比数列的求和公式计算出数列的前项和,即可得出年到年间共投入的新型号公交车的数量;
(3)求出等比数列的前项和,然后解不等式,得出正整数的最小值,即可得出问题的解答.
(1)设从第年开始第年投入的车辆数为,
可知数列是以为首项,以为公比的等比数列,
,因此,年应投入辆新型号公交车;
(2)设等比数列的前项和为,则,
因此,从年到年间共投入辆新型号公交车;
(3)由等比数列的前项和公式得,
由题意可得,得,即,
化简得,,,.
因此,从年开始,该公司新型号公交车总量超过该公司公交车总量的.
科目:高中数学 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了至月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
昼夜温差 | ||||||
就诊人数(个) | 16 |
该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是月与月的两组数据,请根据至月份的数据,求出 关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司培训员工某项技能,培训有如下两种方式:
方式一:周一到周五每天培训1小时,周日测试
方式二:周六一天培训4小时,周日测试
公司有多个班组,每个班组60人,现任选两组记为甲组、乙组先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲组 | 20 | 25 | 10 | 5 |
乙组 | 8 | 16 | 20 | 16 |
用方式一与方式二进行培训,分别估计员工受训的平均时间精确到,并据此判断哪种培训方式效率更高?
在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A,B分别为双曲线 (a>0,b>0)的左、右顶点,双曲线的实轴长为4,焦点到渐近线的距离为.
(1)求双曲线的方程;
(2)已知直线y=x-2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使,求t的值及点D的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形,且,其中,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面,
其中恒成立的为( )
A. ①③ B. ③④ C. ①④ D. ②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com