【题目】如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.
(1)求证:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.
【答案】(1)详见解析;(2).
【解析】
( 1)由题设条件,易证得PC⊥AB,CD⊥AB,故可由线面垂直的判定定理证得AB⊥平面PCB;(2)由图形知,取AP的中点O,连接CO、DO,可证得∠COD为二面角C﹣PA﹣B的平面角,在△CDO中求∠COD即可.
(1)证明:∵PC⊥平面ABC,AB平面ABC,
∴PC⊥AB.
∵CD⊥平面PAB,AB平面PAB,
∴CD⊥AB.又PC∩CD=C,∴AB⊥平面PCB.
(2)取AP的中点O,连接CO、DO.
∵PC=AC=2,∴CO⊥PA,CO,
∵CD⊥平面PAB,由三垂线定理的逆定理,得DO⊥PA.
∴∠COD为二面角C﹣PA﹣B的平面角.
由(1)AB⊥平面PCB,∴AB⊥BC,
又∵AB=BC,AC=2,求得BC
PB,CD
∴
cos∠COD.
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右点分别为点在椭圆上,且
(1)求椭圆的方程;
(2)过点(1,0)作斜率为的直线交椭圆于M、N两点,若求直线的方程;
(3)点P、Q为椭圆上的两个动点,为坐标原点,若直线的斜率之积为求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】统计学中将个数的和记作
(1)设,求;
(2)是否存在互不相等的非负整数,,使得成立,若存在,请写出推理的过程;若不存在请证明;
(3)设是不同的正实数,,对任意的,都有,判断是否为一个等比数列,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在与正实数,使得成立,则称函数在处存在距离为的对称点,把具有这一性质的函数称之为“型函数”.
(1)设,试问是否是“型函数”?若是,求出实数的值;若不是,请说明理由;
(2)设对于任意都是“型函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人分别投掷两颗骰子与一颗骰子,设甲的两颗骰子的点数分别为与,乙的骰子的点数为,则掷出的点数满足的概率为________(用最简分数表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果数列对于任意,都有,其中为常数,则称数列是“间等差数列”,为“间公差”.若数列满足,,.
(1)求证:数列是“间等差数列”,并求间公差;
(2)设为数列的前n项和,若的最小值为-153,求实数的取值范围;
(3)类似地:非零数列对于任意,都有,其中为常数,则称数列是“间等比数列”,为“间公比”.已知数列中,满足,,,试问数列是否为“间等比数列”,若是,求最大的整数使得对于任意,都有;若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com