精英家教网 > 高中数学 > 题目详情

【题目】在 中, .

(1)求 的面积之比;
(2)若 中点, 交于点 ,且 ,求 的值.

【答案】
(1)解:在 中, ,可得 ,即点 在线段 靠近 点的四等分点. 故 的面积之比为

(2)解:因为

,所以

因为 中点,所以

因为 ,所以 ,即

,所以 ,所以 .


【解析】(1)由已知利用向量的线性运算得出向量共线,根据比值的关系可得出点 M 在线段 B C 靠近 B 点的四等分点,利用面积公式推导出 Δ A B M 与 Δ A B C 的面积之比为边之比为。(2)根据向量的线性运算可得出共线利用已知求出x = 3 y,再利用中点的性质结合向量的线性运算可得证共线又得到2 x + y = 1,联立两式分别求出x、y的值即得结果。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知线段AB的端点B在圆C1:x2+(y﹣4)2=16上运动,端点A的坐标为(4,0),线段AB中点为M, (Ⅰ)试求M点的轨C2方程;
(Ⅱ)若圆C1与曲线C2交于C,D两点,试求线段CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,它的准线过双曲线 的右焦点,而且与x轴垂直.又抛物线与此双曲线交于点 ,求抛物线和双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 三边所在直线方程: ).
(1)判断 的形状;
(2)当 边上的高为1时,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax+bx+cx , 其中c>a>0,c>b>0,若a,b,c是△ABC的三条边长,则下列结论正确的是( ) ①对任意x∈(﹣∞,1),都有f(x)<0;
②存在x∈R,使ax , bx , cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,存在x∈(1,2),使f(x)=0.
A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数f(x)满足f(1)=1,且2f′(x)>1,当x∈[﹣ ]时,不等式f(2cosx)> ﹣2sin2 的解集为(
A.(
B.(﹣
C.(0,
D.(﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c为△ABC的内角A,B,C的对边,满足 = ,函数f(x)=sinωx(ω>0)在区间[0, ]上单调递增,在区间[ ,π]上单调递减.
(1)证明:b+c=2a;
(2)若f( )=cos A,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和. 如:1= + + ,1= + + + ,1= + + + + ,…依此类推可得:1= + + + + + + + + + + + + ,其中m≤n,m,n∈N* . 设1≤x≤m,1≤y≤n,则 的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)是定义在R上的奇函数,且在区间(﹣∞,0]上是减函数,则不等式f(lnx)<﹣f(1)的解集为(
A.(e,+∞)
B.( ,+∞)
C.( ,e)
D.(0,

查看答案和解析>>

同步练习册答案