精英家教网 > 高中数学 > 题目详情
精英家教网选修4-1:几何证明选讲
如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径.
(Ⅰ)求证AC•BC=AD•AE:;
(Ⅱ)过点C作⊙O的切线交BA的延长线于点F,若AF=2,CF=4,求AC的长.
分析:(I)如图所示,连接BE.由于AE是⊙O的直径,可得∠ABE=90°.利用∠E与∠ACB都是
AB
所对的圆周角,可得∠E=∠ACB.进而得到△ABE∽△ADC,即可得到.
(II)利用切割线定理可得CF2=AF•BF,可得BF.再利用△AFC∽△CFB,可得
AF
FC
=
AC
BC
,即可得出.
解答:(I)证明:如图所示,连接BE.精英家教网
∵AE是⊙O的直径,∴∠ABE=90°.
又∠E与∠ACB都是
AB
所对的圆周角,∴∠E=∠ACB.
∵AD⊥BC,∠ADC=90°.
∴△ABE∽△ADC,∴
AB
AD
=
AE
AC
,∴AB•AC=AD•AE.
又AB=BC,∴BC•AC=AD•AE.
(II)∵CF是⊙O的切线,∴CF2=AF•BF,
∵AF=2,CF=4,∴42=2BF,解得BF=8.
∴AB=BF-AF=6.∵∠ACF=∠FBC,∠CFB=∠AFC,∴△AFC∽△CFB,
AF
FC
=
AC
BC
,∴AC=
AF•BC
CF
=3.
点评:本题考查了圆的性质、三角形相似、切割线定理,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选修4-1:几何证明选讲
如图,圆O的直径AB=10,弦DE⊥AB于点H,HB=2.
(1)求DE的长;
(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2
5
,求PD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A、选修4-1:几何证明选讲 
如图,PA与⊙O相切于点A,D为PA的中点,
过点D引割线交⊙O于B,C两点,求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.
D.选修4-5:不等式选讲
求函数y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)选修4-1:几何证明选讲
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=
12
,圆O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)选修4-1:几何证明选讲
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交圆O于点E,连结BE与AC交于点F,求证:AE2=EF•BE.

查看答案和解析>>

同步练习册答案