精英家教网 > 高中数学 > 题目详情
12.在自变量的同一变化过程中,下列命题中正确的是(  )
A.若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,则$\underset{lim}{x→{x}_{0}}$[f(x)+g(x)]不存在
B.若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,则$\underset{lim}{x→{x}_{0}}$[f(x)g(x)]不存在
C.$\underset{lim}{x→{x}_{0}}$$\frac{f(x)}{g(x)}$存在,且$\underset{lim}{x→{x}_{0}}$[g(x)]=0,则$\underset{lim}{x→{x}_{0}}$f(x)=0
D.若$\underset{lim}{x→{x}_{0}}$|f(x)|=|A|,$\underset{lim}{x→{x}_{0}}$f(x)=A.

分析 利用极限的性质和运算法则求解.

解答 解:在A中:若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,则$\underset{lim}{x→{x}_{0}}$[f(x)+g(x)]有可能存在,故A错误;
在B中,若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,则$\underset{lim}{x→{x}_{0}}$[f(x)g(x)]有可能存在,故B错误;
在C中:$\underset{lim}{x→{x}_{0}}$$\frac{f(x)}{g(x)}$存在,且$\underset{lim}{x→{x}_{0}}$[g(x)]=0,
则$\underset{lim}{x→{x}_{0}}$f(x)=0一定成立,否则$\underset{lim}{x→{x}_{0}}$$\frac{f(x)}{g(x)}$不存在,故C正确;
在D中,若$\underset{lim}{x→{x}_{0}}$|f(x)|=|A|,$\underset{lim}{x→{x}_{0}}$f(x)=A或$\underset{lim}{x→{x}_{0}}$f(x)=-A,故D错误.
故选:C.

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意极限的性质和运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),过F1作与x轴不重合的直线l交椭圆于A、B两点,若△ABF1为正三角形,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点为F1,F2,P为椭圆上一点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最小值是2c2,其中$c=\sqrt{{a^2}-{b^2}}$.则椭圆的离心率是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=x2-2x+4,x∈[0,2]的值域为[3,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.底面半径为1,母线长为2的圆锥的体积为(  )
A.B.$\sqrt{3}π$C.$\frac{2π}{3}$D.$\frac{{\sqrt{3}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在递增等差数列{an}中,a3=1,a4是a3和a7的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求该数列的前10项的和S10的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆的中心在坐标原点,焦点在x轴上,且经过点(2,0)和点(0,1),求椭圆的标准方程及其离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,半径R=2的球O中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与圆柱的侧面积之差等于8π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f(x)+f(1),若直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,则实数k的取值范围为(2$\sqrt{2}$-1,2$\sqrt{6}$-4).

查看答案和解析>>

同步练习册答案