精英家教网 > 高中数学 > 题目详情

【题目】对于无穷数列和函数,若,则称是数列的母函数.

(Ⅰ)定义在上的函数满足:对任意,都有,且;又数列满足.

(1)求证: 是数列的母函数;

(2)求数列的前项.

(Ⅱ)已知是数列的母函数,且.若数列的前项和为,求证: .

【答案】(Ⅰ)(1)证明见解析;(2) ;(Ⅱ)证明见解析.

【解析】试题分析:

(Ⅰ)(1)由题意结合母函数的定义即可证得结论;

(2)由题意错位相减可得

(Ⅱ)由题意结合不等式的特点即可证得题中的结论.

试题解析:

(Ⅰ)(1)由题知,且

.

是数列的母函数;

(2) 由(1) 知: 是首项和公差均为的等差数列,故.

两式相减得: .

.

(Ⅱ)由题知: .

.

从而是以为首项, 为公比的等比数列

故当

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1,求函数的极值;

2若函数上单调递减,求实数的取值范围;

3在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数yAsin(ωxφ)(A>0,ω>0)的图象过点P ,图象与P点最近的一个最高点坐标为 .

(1)求函数解析式;

(2)求函数的最大值,并写出相应的x的值;

(3)求使y≤0时,x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准(吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照 ,…, 分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中 的值;

(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

(Ⅲ)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的一元二次方程x2+2ax+b2=0.

(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.

(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处与直线相切,求的值;

(2)若函数有两个零点,试判断的符号,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1在区间上具有时间的单调性,求实数的取值范围;

2,且函数的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第十二届全国人民代表大会第五次会议和政协第十二届全国委员会第五次会议(简称两会)分别于2017年3月5日和3月3日在北京开幕,某高校学生会为了解该校学生对全国两会的关注情况,随机调查了该校200名学生,并将这200名学生分为对两会“比较关注”与“不太关注”两类,已知这200名学生中男生比女生多20人,对两会“比较关注”的学生中男生人数比女生人数之比为,对两会“不太关注”的学生中男生比女生少5人.

(Ⅰ)根据题意建立的列联表,并判断是否有的把握认为男生与女生对两会的关注有差异?

(Ⅱ)该校学生会从对两会“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2人参与两会宣传活动,求这2人全是男生的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数). 

(Ⅰ)求函数在点处的切线方程;

(Ⅱ)当函数处取得极值,求函数的解析式;

(Ⅲ)当时,设,若函数在定义域上存在单调减区间,求实数的取值范围.

查看答案和解析>>

同步练习册答案