精英家教网 > 高中数学 > 题目详情
半径为r的球在一个圆锥内部,它的轴截面是一个正三角形与其内切圆,则圆锥的全面积与球面面积的比是
 
考点:旋转体(圆柱、圆锥、圆台)
专题:计算题,空间位置关系与距离
分析:通过轴截面是一个正三角形与其内切圆,求出圆锥的底面半径与圆锥的高,求出球的表面积与圆锥的全面积,即可得到比值.
解答: 解:因为半径为r的球在一个圆锥内部,它的轴截面是一个正三角形与其内切圆,
所以圆锥的高为:3r,正三角形的高为:3r,所以正三角形的边长a,
3
2
a=3r

所以a=2
3
r,
球的表面积为:4πr2
圆锥的表面积为:(
3
r)2π+
1
2
×2
3
rπ×2
3
r
=9πr2
圆锥的全面积与球面面积的比:9:4.
故答案为:9:4.
点评:本题考查圆锥的内接球,球的表面积与圆锥的表面积的求法,考查计算能力,空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E经过A(1,
3
2
),一个焦点坐标为(-1,0),求以P(1,
3
2
)为中点的弦所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥曲线C:
x=2cosα
y=
3
sinα
(α为参数)和定点A(0,
3
),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.
(1)求直线AF2的直角坐标方程;
(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求|MF1|-|NF1|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=tanx+sinx-|tanx-sinx|在区间(
π
2
2
)内的最大值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}满足S7=77,且a1,a3,a11成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=2 an,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-2,0),F2(2,0)两点,动点P满足|PF1|+|PF2|=
3
2
|F1F2|,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax,g(x)=-x2-1,若函数f(x)与g(x)有两条公切线,且由四个切点组成的多边形的周长为6.则a 的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+1,若存在x∈R,使得不等式f2(x)+x[f(x)+x]-af(x)[f(x)+x]≤0成立,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个球的表面积为36πcm2,则它的半径等于(  )
A、3πcm
B、3
3
πcm
C、3cm
D、3
3
cm

查看答案和解析>>

同步练习册答案