精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\sqrt{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\sqrt{2}$sin2$\frac{x}{2}$
(Ⅰ) 求f(x)的最小正周期;
(Ⅱ).在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f(2A)=0,且a=1求△ABC面积的最大值.

分析 (Ⅰ)利用三角函数恒等变换的应用化简函数解析式为f(x)=sin(x+$\frac{π}{4}$)-$\frac{\sqrt{2}}{2}$,利用周期公式即可得解.
(Ⅱ)由已知可求$sin(2A+\frac{π}{4})=\frac{{\sqrt{2}}}{2}$,结合A为锐角,可得$cosA=\frac{{\sqrt{2}}}{2}$,利用余弦定理,基本不等式可求$bc≤\frac{{2+\sqrt{2}}}{2}$,进而利用三角形面积公式即可得解.

解答 (本小题满分12分)
解:(Ⅰ)∵f(x)=$\sqrt{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\sqrt{2}$sin2$\frac{x}{2}$
=$\frac{\sqrt{2}}{2}$sinx-$\sqrt{2}×\frac{1-cosx}{2}$=sin(x+$\frac{π}{4}$)-$\frac{\sqrt{2}}{2}$,…(4分)
∴f(x)的最小正周期为T=$\frac{2π}{1}$=2π;…(5分)
(Ⅱ)由$f(2A)=sin(2A+\frac{π}{4})-\frac{{\sqrt{2}}}{2}=0$,得$sin(2A+\frac{π}{4})=\frac{{\sqrt{2}}}{2}$,
由题意知A为锐角,所以$A=\frac{π}{4}$,可得:$cosA=\frac{{\sqrt{2}}}{2}$,…(8分)
由余弦定理:${a^2}={b^2}+{c^2}-2bccosA可得:1+\sqrt{2}bc={b^2}+{c^2}≥2bc$,
即$bc≤\frac{{2+\sqrt{2}}}{2}$,当且仅当b=c时等号成立,…(10分)
因此$\frac{1}{2}bcsinA≤\frac{{1+\sqrt{2}}}{4}$,
所以△ABC面积的最大值为$\frac{{1+\sqrt{2}}}{4}$.…(12分)

点评 本题主要考查了三角函数恒等变换的应用,周期公式,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了转化思想和运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|-1<x≤3},集合B={x|0≤x<4}.求
(1)A∩B;
(2)A∪B;
(3)A∩(∁RB);
(4)∁R (A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个三棱锥的底面是等边三角形,各侧棱长均为$\sqrt{3}$,那么该三棱锥的体积最大时,它的高为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\frac{{\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知P在抛物线y2=4x上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱台ABC-A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1,M,N分别为AC,BC的中点.
(1)求证:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C-MC1-N的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图为从空中某个角度俯视北京奥运会主体育场“鸟巢”顶棚所得的局部示意图,在平面直角坐标系中,下列给定的一系列直线中(其中θ为参数,θ∈R),能形成这种效果的只可能是(  )
A.y=xsinθ+1B.y=x+cosθC.xcosθ+ysinθ+1=0D.y=xcosθ+sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正项数列{an}中前n项和为Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),求Sn及an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{e}^{x}}{{x}^{2}-mx+1}$
(1)若m∈(-2,2),求函数y=f(x)的单调区间;
(2)若m∈(0,$\frac{1}{2}$],则当x∈[0,m+1]时,函数y=f(x)的图象是否总在直线y=x上方,请写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线 l:(2m+1)x+(m+1)y-7m-4=0(m∈R)被圆C:(x-1)2+(y-2)2=25 所截得的最短的弦长为4$\sqrt{5}$.

查看答案和解析>>

同步练习册答案