精英家教网 > 高中数学 > 题目详情
7.若a,b∈R,i为虚数单位,且(a+i)i=b+$\frac{5}{2-i}$,则a+b=-2.

分析 由复数代数形式的乘除运算化简(a+i)i=b+$\frac{5}{2-i}$,再根据复数相等的充要条件即可求出a,b的值,则a+b可求.

解答 解:由(a+i)i=b+$\frac{5}{2-i}$,
得$-1+ai=b+\frac{5(2+i)}{(2-i)(2+i)}=b+2+i$,
∴a=1,b=-3.
则a+b=-2.
故答案为:-2.

点评 本题考查了复数代数形式的乘除运算,考查了复数相等的充要条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某程序框图如图所示,该程序运行结束时输出的S的值为(  )
A.1007B.1008C.2016D.3024

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某连锁经营公司所属5个零售店某月的销售额和利润额资料如表:
商店名称ABCDE
销售额x(千万元)35679
利润额y(千万元)23345
(Ⅰ)用最小二乘法计算利润额y对销售额x的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.
(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,|$\overrightarrow{BC}$|=4,△ABC的内切圆切BC于D点,且|$\overrightarrow{BD}$|-|$\overrightarrow{CD}$|=2$\sqrt{2}$,则顶点A的轨迹方程为$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1(x>$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.类比实数的运算性质猜想复数的运算性质:
①“mn=nm”类比得到“z1z2=z2z1”;
②“|m•n|=|m|•|n|”类比得到“|z1•z2|=|z1|•|z2|”;
③“|x|=1⇒x=±1”类比得到“|z|=1⇒z=±1”
④“|x|2=x2”类比得到“|z|2=z2
以上的式子中,类比得到的结论正确的个数是(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.都与直线a相交的两条直线确定一个平面
B.两条直线确定一个平面
C.过一条直线的平面有无数多个
D.两个相交平面的交线是一条线段

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.观察:$\sqrt{6}$+$\sqrt{15}$<2$\sqrt{11}$,$\sqrt{5.5}$+$\sqrt{15.5}$<2$\sqrt{11}$,$\sqrt{4-\sqrt{2}}$+$\sqrt{17+\sqrt{2}}$<2$\sqrt{11}$,…,对于任意的正实数a,b,使$\sqrt{a}$+$\sqrt{b}$<2$\sqrt{11}$成立的一个条件可以是(  )
A.a+b=22B.a+b=21C.ab=20D.ab=21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l参数方程为$\left\{\begin{array}{l}x=\sqrt{3}+tcosθ\\ y=tsinθ\end{array}\right.(t为参数,0≤θ<π)$,曲线C的极坐标方程为ρ2=$\frac{4}{1+{3sin}^{2}θ}$
(1)写出曲线C的普通方程;
(2)若F1为曲线C的左焦点,直线l与曲线C交于A,B两点,求|F1A|•|F1B|最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=($\frac{2}{1+{e}^{x}}$-1)•sinx的图象大致形状为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案