精英家教网 > 高中数学 > 题目详情
集合A={x|x2≤2x}与集合B={x|
x-1
x-2
≤0}
的交集是(  )
分析:分别求解一元二次不等式和分式不等式化简集合A与B,然后直接利用交集运算求解.
解答:解:由A={x|x2≤2x}={x|0≤x≤2},B={x|
x-1
x-2
≤0}
={x|1≤x<2}.
所以A∩B={x|0≤x≤2}∩{x|1≤x<2}={x|1≤x<2}.
故选A.
点评:本题考查了一元二次不等式和分式不等式的解法,考查了交集及其运算,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、若集合A={x|x2-x+1≥0},B={x|x2-5x+4≤0},则A∩B=
{x|1≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={x|x2-mx+m-1=0},若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2=4},B={x|ax=1},若B⊆A,则实数a的取值集合为
{0,-2,2}
{0,-2,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|x2+ax+1=0,x∈R},B={1,2},且A=B,求a的取值范围.

查看答案和解析>>

同步练习册答案