精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=ax5-bx3+cln(|x+$\sqrt{{x}^{2}-1}$|)-3,f(-3)=7,则f(3)的值为-13.

分析 利用函数的解析式,通过方程化简求解即可.

解答 解:函数f(x)=ax5-bx3+cln(|x+$\sqrt{{x}^{2}-1}$|)-3,
f(-3)=-a35+b33+cln(|-3+2$\sqrt{2}$|)-3=7,
可得a35-b33+cln(3+2$\sqrt{2}$)=-10.
f(3)=a35-b33-cln(3+2$\sqrt{2}$)-3=-10-3=-13.
故答案为:-13.

点评 本题考查函数的奇偶性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知奇函数y=f(x)在定义域R上是单调减函数,且f(a+1)+f(2a)>0,则a的取值范围是(-∞,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x|x2-2x=0},B={0,1,2},则A∩B={0,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.两圆(x-1)2+(y+2)2=1与(x+3)2+(y-1)2=16的位置关系是(  )
A.内切B.外切C.相离D.相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x2+ax-c,g(x)=($\frac{1}{2}$)x-m,若不等式f(x)<0的解集为{x|-2<x<1},若对任意的x1∈[-3,-2],存在x2∈[0,2],使f(x1)≥g(x2),则实数m的取值范围是(  )
A.m≥$\frac{1}{4}$B.m≥1C.m≥0D.m≥2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆C1:(x+1)2+y2=1,C2:(x-1)2+y2=25,动圆C与圆C1外切,与圆C2内切,则圆C的圆心的轨迹方程为(  )
A.$\frac{x^2}{3}+\frac{y^2}{2}=1$B.$\frac{x^2}{9}+\frac{y^2}{4}=1$C.$\frac{x^2}{9}+\frac{y^2}{5}=1$D.$\frac{x^2}{9}+\frac{y^2}{8}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数a(a>1)的点的轨迹,给出下列四个结论:
①曲线C关于坐标轴对称;
②曲线C过点$(0,\sqrt{a-1})$;
③若点P在曲线C上(不在x轴上),则△PF1F2的面积不大于$\frac{1}{2}a$.
其中,所有正确结论的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在l:x+y-4=0任取一点M,过M且以椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1的焦点为焦点作椭圆,问M在何处,M到两焦点的距离和最短,并求此椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知关于x,y的不等式$\frac{|x|}{a}+\frac{|y|}{3}≤1$(a>0)所表示的平面区域的面积为24,则a的值为4.

查看答案和解析>>

同步练习册答案