精英家教网 > 高中数学 > 题目详情
14.在下列各图中,两个变量具有线性相关关系的图是(  )
A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3)

分析 观察两个变量的散点图,若样本点成带状分布,则两个变量具有线性相关关系,若带状越细说明相关关系越强,得到两个变量具有线性相关关系的图是(2)和(3).

解答 解:∵两个变量的散点图,
若样本点成带状分布,则两个变量具有线性相关关系,
∴两个变量具有线性相关关系的图是(2)和(3).
故选D.

点评 本题考查散点图,从散点图上判断两个变量有没有线性相关关系,这是初步判断两个变量是否有相关关系的一种方法,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=$\frac{π}{4}$处取得最大值,则函数y=f(x+$\frac{π}{4}$)是(  )
A.奇函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点($\frac{3π}{2}$,0)对称
C.奇函数且它的图象关于点($\frac{3π}{2}$,0)对称
D.偶函数且它的图象关于点(π,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)为奇函数且在(-∞,0)上单调递减,f(-2)=0,则xf(x)>0的解集为(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=ax-\frac{1}{x}-(a+1)lnx,a∈R$.
(I)求函数f(x)在$x=\frac{1}{2}$处的切线方程为4x-y+m=0时,此时函数f(x)的单调区间;
(Ⅱ)若$a>\frac{1}{e}$,判断函数g(x)=x[f(x)+a+1]的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在三角形中,“三条边长为3,4,5”是“三条边长为连续整数的直角三角形”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A={x||x+2|≥5},B={x||3-x|<2},则A∪B=(  )
A.RB.{x|x≤-7或x≥3}C.{x|x≤-7或x>1}D.{x|-7≤x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若正数x,y满足x+2y+4=4xy,且不等式(x+2y)a2+2a+2xy-34≥0恒成立,则实数a的取值范围是(  )
A.(-∞,-$\frac{3}{2}$]∪[$\frac{3}{2}$,+∞)B.(-∞,-3]∪[$\frac{3}{2}$,+∞)C.(-∞,-3]∪[$\frac{5}{2}$,+∞)D.(-∞,-$\frac{3}{2}$]∪[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列四组函数中,表示相等函数的一组是(  )
A.f(x)=$\sqrt{{x}^{2}}$与g(x)=($\sqrt{x}$)2B.f(x)=|x|与g(x)=$\sqrt{{x}^{2}}$
C.g(x)=$\frac{{x}^{2}-1}{x-1}$与g(x)=x+1D.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$与g(x)=$\sqrt{{x}^{2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列说法错误的是①.
①已知命题p为“?x∈[0,+∞),(log32)x≤1”,则非p是真命题
②若p∨q为假命题,则p,q均为假命题
③x>2是x>1充分不必要条件
④“全等三角形的面积相等”的否命题是假命题.

查看答案和解析>>

同步练习册答案