精英家教网 > 高中数学 > 题目详情
2.在△ABC中,a,b,c分别是角A,B,C的对边.已知(a2+b2)sin(A-B)=(a2-b2)sin(A+B),试判断该三角形的形状.

分析 利用两角和与差的三角函数以及正弦定理,推出$\frac{1}{2}sin2A=\frac{1}{2}sin2B$,求出A与B的关系,得到三角形的形状.

解答 解:∵(a2+b2)sin(A-B)=(a2-b2)sin(A+B),
∴(a2+b2)(sinAcosB-cosAsinB)=(a2-b2)(sinAcosB+cosAsinB),
即sinAcosB(a2+b2-a2+b2)=cosAsinB(a2-b2+a2+b2).
即sinAcosB(2b2)=cosAsinB(2a2).
sinAcosBsin2B=cosAsinBsin2A.
sinAcosB(sinBcosB-sinAcosA)=0.
$\frac{1}{2}sin2A=\frac{1}{2}sin2B$,
A=B或2A+2B=180°,
故三角形是等腰三角形或直角三角形.

点评 本题考查三角形的形状的判断,两角和与差的三角函数的应用,正弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设△ABC的内角A、B、C所对的边a、b、c成等比数列,则$\frac{b}{a}+\frac{a}{b}$的取值范围$[2,\sqrt{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆心在原点,半径为5的圆的方程是x2+y2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC面积的最大值是(  )
A.3-$\sqrt{2}$B.$3+\sqrt{2}$C.$3-\frac{{\sqrt{2}}}{2}$D.$\frac{{3-\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.判断下列各组中的两个函数是同一函数的为(  )
A.${y_1}=\frac{(x+3)(x-5)}{x+3},{y_2}=x-5$B.y1=$\sqrt{x+1}$•$\sqrt{x-1}$,y2=$\sqrt{(x+1)(x-1)}$
C.y1=x,y2=$\sqrt{{x}^{2}}$D.y1=$\root{3}{{x}^{4}-{x}^{3}}$,y2=$x\root{3}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在等差数列{an}中,其前n项和记为Sn
(1)若S101=0,则a51=0;
(2)若6S5-5S3=5,则a4=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H扩展”.已知数列1,2.第一次“H扩展”后得到1,3,2;第二次“H扩展”后得到1,4,3,5,2.那么第10次“H扩展”后得到的数列的项数为(  )
A.1023B.1025C.513D.511

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$+x+1,若f(a)+f(a+1)>2,则实数a的取值范围是a>-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线2x-y-2=0与x、y轴分别交A、B两点,点P在抛物线y=4x2上,试求△PAB面积的最小值.

查看答案和解析>>

同步练习册答案