分析 由题意可得圆的圆心和半径,由二次函数可得P与圆心距离的最小值,减掉半径即可.
解答 解:∵圆x2+y2-8x+15=0可化为(x-4)2+y2=1,
∴圆的圆心为(4,0),半径为1,
设P(x0,y0)为抛物线y2=4x上的任意一点,
∴y02=4x0,∴P与(4,0)的距离d=$\sqrt{({x}_{0}-4)^{2}+{{y}_{0}}^{2}}$
=$\sqrt{{{x}_{0}}^{2}-8{x}_{0}+16+4{x}_{0}}$=$\sqrt{({x}_{0}-2)^{2}+12}$,
∴由二次函数可知当x0=2时,d取最小值2$\sqrt{3}$,
∴所求最小值为:2$\sqrt{3}$-1
故答案为:2$\sqrt{3}$-1
点评 本题考查两点间的距离公式,涉及抛物线和圆的知识,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com